69 research outputs found

    Demodulation and Detection Schemes for a Memoryless Optical WDM Channel

    Get PDF
    It is well known that matched filtering and sampling (MFS) demodulation together with minimum Euclidean distance (MD) detection constitute the optimal receiver for the additive white Gaussian noise channel. However, for a general nonlinear transmission medium, MFS does not provide sufficient statistics, and therefore is suboptimal. Nonetheless, this receiver is widely used in optical systems, where the Kerr nonlinearity is the dominant impairment at high powers. In this paper, we consider a suite of receivers for a two-user channel subject to a type of nonlinear interference that occurs in wavelength-division-multiplexed channels. The asymptotes of the symbol error rate (SER) of the considered receivers at high powers are derived or bounded analytically. Moreover, Monte-Carlo simulations are conducted to evaluate the SER for all the receivers. Our results show that receivers that are based on MFS cannot achieve arbitrary low SERs, whereas the SER goes to zero as the power grows for the optimal receiver. Furthermore, we devise a heuristic demodulator, which together with the MD detector yields a receiver that is simpler than the optimal one and can achieve arbitrary low SERs. The SER performance of the proposed receivers is also evaluated for some single-span fiber-optical channels via split-step Fourier simulations

    Performance Prediction of Nonbinary Forward Error Correction in Optical Transmission Experiments

    Get PDF
    In this paper, we compare different metrics to predict the error rate of optical systems based on nonbinary forward error correction (FEC). It is shown that the correct metric to predict the performance of coded modulation based on nonbinary FEC is the mutual information. The accuracy of the prediction is verified in a detailed example with multiple constellation formats, FEC overheads in both simulations and optical transmission experiments over a recirculating loop. It is shown that the employed FEC codes must be universal if performance prediction based on thresholds is used. A tutorial introduction into the computation of the threshold from optical transmission measurements is also given.Comment: submitted to IEEE/OSA Journal of Lightwave Technolog

    Capacity Analysis and Receiver Design in the Presence of Fiber Nonlinearity

    Get PDF
    The majority of today\u27s global Internet traffic is conveyed through optical fibers. The ever-increasing data demands have pushed the optical systems to evolve from using regenerators and direct-direction receivers to a coherent multi-wavelength network. Future services like cloud computing and virtual reality will demand more bandwidth, so much so that the so called capacity-crunch is anticipated to happen in near future. Therefore, studying the capacity of the optical system is needed to better understanding and utilizing the existing fiber network.The characterization of the capacity of the dispersive and nonlinear optical fiber described by the nonlinear Schr{\"o}dinger equation is an open problem. There are a number of lower bounds on the capacity which are mainly obtained based on the mismatched decoding principle or by analyzing simplified channels. These lower bounds either fall to zero at high powers or saturate. The question whether the fiber-optical capacity has the same behavior as the lower bounds at high power is still open. Indeed, the only known upper bound increases with the power unboundedly. In this thesis, we first study how the fiber nonlinear distortion is modeled in some simplified channels and what is the influence of the simplifying assumptions on the capacity. To do so, the capacity of three different memoryless simplified models of the fiber-optical channel are studied. The results show that in the high-power regime the capacities of these models grow with different pre-logs, which indicates the profound impact of the simplifying assumptions on the capacity of these channels. Next, we turn our attention to demodulation and detection processes in the presence of fiber nonlinearity. We study a two-user memoryless network. It is shown that by deploying a nonlinearity-tailored demodulator, the performance improves substantially compared with matched filtering and sampling. In the absence of dispersion, we show that with the new receiver, unlike with matched filtering and sampling, arbitrarily low bit error rates can be achieved. Furthermore, we show via simulations that performance improvements can be obtained also for a low-dispersion fiber.Then, we study the performance of three different dispersion compensation methods in the presence of inter-channel nonlinear interference. The best performance, in terms of achievable information rate, is obtained by a link with inline per-channel dispersion compensation combined with a receiver that compensates for inter-channel nonlinearities. Finally, the capacity analysis is performed for short-reach noncoherent channel, where the source of nonlinearity is not the fiber but a square-law receiver. Capacity bounds are established in the presence of optical and thermal noises. Using these bounds we show that optical amplification is beneficial at low signal-to-noise ratios (SNRs), and detrimental at high SNRs. We quantify the SNR regime for each case for a wide range of channel parameters

    A Low-Complexity Detector for Memoryless Polarization-Multiplexed Fiber-Optical Channels

    Get PDF
    A low-complexity detector is introduced for polarization-multiplexed M-ary phase shift keying modulation in a fiber-optical channel impaired by nonlinear phase noise, generalizing a previous result by Lau and Kahn for single-polarization signals. The proposed detector uses phase compensation based on both received signal amplitudes in conjunction with simple straight-line rather than four-dimensional maximum-likelihood decision boundaries.Comment: accepted for publication in IEEE Comm. Let

    Advanced DSP for coherent optical fiber communication

    Get PDF
    In this paper, we provide an overview of recent progress on advanced digital signal processing (DSP) techniques for high-capacity long-haul coherent optical fiber transmission systems. Not only the linear impairments existing in optical transmission links need to be compensated, but also, the nonlinear impairments require proper algorithms for mitigation because they become major limiting factors for long-haul large-capacity optical transmission systems. Besides the time domain equalization (TDE), the frequency domain equalization (FDE) DSP also provides a similar performance, with a much-reduced computational complexity. Advanced DSP also plays an important role for the realization of space division multiplexing (SDM). SDM techniques have been developed recently to enhance the system capacity by at least one order of magnitude. Some impressive results have been reported and have outperformed the nonlinear Shannon limit of the single-mode fiber (SMF). SDM introduces the space dimension to the optical fiber communication. The few-mode fiber (FMF) and multi-core fiber (MCF) have been manufactured for novel multiplexing techniques such as mode-division multiplexing (MDM) and multi-core multiplexing (MCM). Each mode or core can be considered as an independent degree of freedom, but unfortunately, signals will suffer serious coupling during the propagation. Multi-input−multi-output (MIMO) DSP can equalize the signal coupling and makes SDM transmission feasible. The machine learning (ML) technique has attracted worldwide attention and has been explored for advanced DSP. In this paper, we firstly introduce the principle and scheme of coherent detection to explain why the DSP techniques can compensate for transmission impairments. Then corresponding technologies related to the DSP, such as nonlinearity compensation, FDE, SDM and ML will be discussed. Relevant techniques will be analyzed, and representational results and experimental verifications will be demonstrated. In the end, a brief conclusion and perspective will be provided

    Stochastic Digital Backpropagation with Residual Memory Compensation

    Full text link
    Stochastic digital backpropagation (SDBP) is an extension of digital backpropagation (DBP) and is based on the maximum a posteriori principle. SDBP takes into account noise from the optical amplifiers in addition to handling deterministic linear and nonlinear impairments. The decisions in SDBP are taken on a symbol-by-symbol (SBS) basis, ignoring any residual memory, which may be present due to non-optimal processing in SDBP. In this paper, we extend SDBP to account for memory between symbols. In particular, two different methods are proposed: a Viterbi algorithm (VA) and a decision directed approach. Symbol error rate (SER) for memory-based SDBP is significantly lower than the previously proposed SBS-SDBP. For inline dispersion-managed links, the VA-SDBP has up to 10 and 14 times lower SER than DBP for QPSK and 16-QAM, respectively.Comment: 7 pages, accepted to publication in 'Journal of Lightwave Technology (JLT)

    Increasing the information rates of optical communications via coded modulation: a study of transceiver performance

    Get PDF
    Optical fibre underpins the global communications infrastructure and has experienced an astonishing evolution over the past four decades, with current commercial systems transmitting data rates in excess of 10 Tb/s over a single fibre core. The continuation of this dramatic growth in throughput has become constrained due to a power dependent nonlinear distortion arising from a phenomenon known as the Kerr effect. The mitigation of fibre nonlinearities is an area of intense research. However, even in the absence of nonlinear distortion, the practical limit on the transmission throughput of a single fibre core is dominated by the finite signal-to-noise ratio (SNR) afforded by current state-of-the-art coherent optical transceivers. Therefore, the key to maximising the number of information bits that can be reliably transmitted over a fibre channel hinges on the simultaneous optimisation of the modulation format and code rate, based on the SNR achieved at the receiver. In this work, we use an information theoretic approach based on the mutual information and the generalised mutual information to characterise a state-of-the-art dual polarisation m-ary quadrature amplitude modulation transceiver and subsequently apply this methodology to a 15-carrier super-channel to achieve the highest throughput (1.125 Tb/s) ever recorded using a single coherent receiver
    • …
    corecore