75,639 research outputs found

    Researching sustainable agriculture: The role of values in systemic science

    Get PDF
    This paper presents a specific perspective on the science demarcation issue, the perspective of systemic science. A systemic science is a science that influences its own subject area. Agricultural science is an example of such a science - a point that is particularly evident in connection with research in organic farming, which forms the practical context of this paper. Far from the ideal of being 'value-free' and objective, the systemic science must, upon recognising itself as systemic, acknowledge the role of values in research and include value inquiry as a specific research task. But still, the systemic science insists that it is science. Given that it is science, what then demarcates 'science' as different from other social activities? Or, in other terms, what are the proper criteria of scientific quality for systemic sciences? The paper aims to develop the conception of systemic science and investigate some basic aspects of science as a learning process, in order to work towards a more adequate foundation for developing and evaluating systemic research methods, and for determining appropriate criteria of scientific quality in systemic science

    Cognitive architectures as Lakatosian research programmes: two case studies

    Get PDF
    Cognitive architectures - task-general theories of the structure and function of the complete cognitive system - are sometimes argued to be more akin to frameworks or belief systems than scientific theories. The argument stems from the apparent non-falsifiability of existing cognitive architectures. Newell was aware of this criticism and argued that architectures should be viewed not as theories subject to Popperian falsification, but rather as Lakatosian research programs based on cumulative growth. Newell's argument is undermined because he failed to demonstrate that the development of Soar, his own candidate architecture, adhered to Lakatosian principles. This paper presents detailed case studies of the development of two cognitive architectures, Soar and ACT-R, from a Lakatosian perspective. It is demonstrated that both are broadly Lakatosian, but that in both cases there have been theoretical progressions that, according to Lakatosian criteria, are pseudo-scientific. Thus, Newell's defense of Soar as a scientific rather than pseudo-scientific theory is not supported in practice. The ACT series of architectures has fewer pseudo-scientific progressions than Soar, but it too is vulnerable to accusations of pseudo-science. From this analysis, it is argued that successive versions of theories of the human cognitive architecture must explicitly address five questions to maintain scientific credibility

    Strengthening Women's Access to Land into IFAD projects: The Rwanda Experience

    Get PDF
    This paper is a joint effort of IFAD and RISD to analyse and investigate women's land rights in Rwanda. It presents the outcomes of the investigation on women?s land rights and its implications in the redistribution, delimitation and registration process carried out in the Nyagatare, Gatsibo, Kayonza and Kirehe Districts in the Eastern Province. For the assessment, meetings were held in the four Districts, with IFAD project staff, beneficiaries, Cell and District Executive Secretaries, Districts Mayors, members of various men and women cooperatives, District Land Officers, members of Cell and District Land Committees

    The role of falsification in the development of cognitive architectures: insights from a Lakatosian analysis

    Get PDF
    It has been suggested that the enterprise of developing mechanistic theories of the human cognitive architecture is flawed because the theories produced are not directly falsifiable. Newell attempted to sidestep this criticism by arguing for a Lakatosian model of scientific progress in which cognitive architectures should be understood as theories that develop over time. However, Newell’s own candidate cognitive architecture adhered only loosely to Lakatosian principles. This paper reconsiders the role of falsification and the potential utility of Lakatosian principles in the development of cognitive architectures. It is argued that a lack of direct falsifiability need not undermine the scientific development of a cognitive architecture if broadly Lakatosian principles are adopted. Moreover, it is demonstrated that the Lakatosian concepts of positive and negative heuristics for theory development and of general heuristic power offer methods for guiding the development of an architecture and for evaluating the contribution and potential of an architecture’s research program

    The demarcation problem and alternative medicine

    Get PDF

    Maps, fields, and boundary cairns: demarcation and resistance in colonial Cyprus

    Get PDF
    An important component of the administration and control of a colony by an external power was the demarcation and classification of the land and its people. This was certainly the case in Cyprus under British colonial rule (1878-1960), as three case studies demonstrate: the topographical survey of the island by H. H. Kitchener in 1878-1883; the cadastral survey of 1909-1929; and the work of the forest delimitation commission from 1881 to 1896. This was not achieved without resistance on a variety of levels. Ironically, part of the opposition came from the structure of the colonial demarcation and classification project itself

    Towards a systemic research methodology in agriculture: Rethinking the role of values in science

    Get PDF
    The recent drastic development of agriculture, together with the growing societal interest in agricultural practices and their consequences, pose a challenge to agricultural science. There is a need for rethinking the general methodology of agricultural research. This paper takes some steps towards developing a systemic research methodology that can meet this challenge – a general self-reflexive methodology that forms a basis for doing holistic or (with a better term) wholeness-oriented research and provides appropriate criteria of scientific quality. From a philosophy of research perspective, science is seen as an interactive learning process with both a cognitive and a social communicative aspect. This means, first of all, that science plays a role in the world that it studies. A science that influences its own subject area, such as agricultural science, is named a systemic science. From this perspective, there is a need to reconsider the role of values in science. Science is not objective in the sense of being value-free. Values play, and ought to play, an important role in science – not only in form of constitutive values such as the norms of good science, but also in the form of contextual values that enter into the very process of science. This goes against the traditional criterion of objectivity. Therefore, reflexive objectivity is suggested as a new criterion for doing good science, along with the criterion of relevance. Reflexive objectivity implies that the communication of science must include the cognitive context, which comprises the societal, intentional, and observational context. In accordance with this, the learning process of systemic research is shown as a self-reflexive cycle that incorporates both an involved actor stance and a detached observer stance. The observer stance forms the basis for scientific communication. To this point, a unitary view of science as a learning process is employed. A second important perspective for a systemic research methodology is the relation between the actual, different, and often quite separate kinds of science. Cross-disciplinary research is hampered by the idea that reductive science is more objective, and hence more scientific, than the less reductive sciences of complex subject areas – and by the opposite idea that reductive science is necessarily reductionistic. Taking reflexive objectivity as a demarcator of good science, an inclusive framework of science can be established. The framework does not take the established division between natural, social and human science as a primary distinction of science. The major distinction is made between the empirical and normative aspects of science, corresponding to two key cognitive interests. Two general methodological dimensions, the degree of reduction of the research world and the degree of involvement in the research world, are shown to span this framework. The framework can form a basis for transdisciplinary work by way of showing the relation between more and less reductive kinds of science and between more detached and more involved kinds of science and exposing the abilities and limitations attendant on these methodological differences
    corecore