688 research outputs found

    Logic programming in the context of multiparadigm programming: the Oz experience

    Full text link
    Oz is a multiparadigm language that supports logic programming as one of its major paradigms. A multiparadigm language is designed to support different programming paradigms (logic, functional, constraint, object-oriented, sequential, concurrent, etc.) with equal ease. This article has two goals: to give a tutorial of logic programming in Oz and to show how logic programming fits naturally into the wider context of multiparadigm programming. Our experience shows that there are two classes of problems, which we call algorithmic and search problems, for which logic programming can help formulate practical solutions. Algorithmic problems have known efficient algorithms. Search problems do not have known efficient algorithms but can be solved with search. The Oz support for logic programming targets these two problem classes specifically, using the concepts needed for each. This is in contrast to the Prolog approach, which targets both classes with one set of concepts, which results in less than optimal support for each class. To explain the essential difference between algorithmic and search programs, we define the Oz execution model. This model subsumes both concurrent logic programming (committed-choice-style) and search-based logic programming (Prolog-style). Instead of Horn clause syntax, Oz has a simple, fully compositional, higher-order syntax that accommodates the abilities of the language. We conclude with lessons learned from this work, a brief history of Oz, and many entry points into the Oz literature.Comment: 48 pages, to appear in the journal "Theory and Practice of Logic Programming

    Simulated Performance of a Reduction-Based Multiprocessing System

    Get PDF
    Multiprocessing systems have the potential for increasing system speed over what is now offered by device technology. They must provide the means of generating work for the processors, getting the work to processors, and coherently collecting the results from the processors. For most applications, they should also ensure the repeatability of behavior, i.e., determinacy, speed-independence, or elimination of critical races. Determinacy can be destroyed, for example, by permitting-in separate, concurrent processes statements such as x: = x + 1 and if x = 0 then… else… , which share a common variable. Here, there may be a critical race, in that more than one global outcome is possible, depending on execution order. But by basing a multiprocessing system on functional languages, we can avoid such dangers. Our concern is the construction of multiprocessors that can be programmed in a logically transparent fashion. In other words, the programmer should not be aware of programming a multiprocessor versus a uniprocessor, except for optimizing performance for a specific configuration. This means that the programmer should not have to set up processes explicitly to achieve concurrent processing, nor be concerned with synchronizing such processes. Multiprocessor systems present unique concurrency problems. Rediflow combines disciplined von Neumann processes with a hybrid reduction and dataflow model in an effective packet-switching network

    Design, application and implementation of a paralled logic programming language

    Get PDF
    Imperial Users onl

    A Survey on Transactional Stream Processing

    Full text link
    Transactional stream processing (TSP) strives to create a cohesive model that merges the advantages of both transactional and stream-oriented guarantees. Over the past decade, numerous endeavors have contributed to the evolution of TSP solutions, uncovering similarities and distinctions among them. Despite these advances, a universally accepted standard approach for integrating transactional functionality with stream processing remains to be established. Existing TSP solutions predominantly concentrate on specific application characteristics and involve complex design trade-offs. This survey intends to introduce TSP and present our perspective on its future progression. Our primary goals are twofold: to provide insights into the diverse TSP requirements and methodologies, and to inspire the design and development of groundbreaking TSP systems

    Coherent Reaction

    Get PDF
    Side effects are both the essence and bane of imperative programming. The programmer must carefully coordinate actions to manage their side effects upon each other. Such coordination is complex, error-prone, and fragile. Coherent reaction is a new model of change-driven computation that coordinates effects automatically. State changes trigger events called reactions that in turn change other states. A coherent execution order is one in which each reaction executes before any others that are affected by its changes. A coherent order is discovered iteratively by detecting incoherencies as they occur and backtracking their effects. Unlike alternative solutions, much of the power of imperative programming is retained, as is the common sense notion of mutable state. Automatically coordinating actions lets the programmer express what to do, not when to do it. Coherent reactions are embodied in the Coherence language, which is specialized for interactive applications like those common on the desktop and web. The fundamental building block of Coherence is the dynamically typed mutable tree. The fundamental abstraction mechanism is the virtual tree, whose value is lazily computed, and whose behavior is generated by coherent reactions

    Evaluating techniques for parallelization tuning in MPI, OmpSs and MPI/OmpSs

    Get PDF
    Parallel programming is used to partition a computational problem among multiple processing units and to define how they interact (communicate and synchronize) in order to guarantee the correct result. The performance that is achieved when executing the parallel program on a parallel architecture is usually far from the optimal: computation unbalance and excessive interaction among processing units often cause lost cycles, reducing the efficiency of parallel computation. In this thesis we propose techniques oriented to better exploit parallelism in parallel applications, with emphasis in techniques that increase asynchronism. Theoretically, this type of parallelization tuning promises multiple benefits. First, it should mitigate communication and synchronization delays, thus increasing the overall performance. Furthermore, parallelization tuning should expose additional parallelism and therefore increase the scalability of execution. Finally, increased asynchronism would provide higher tolerance to slower networks and external noise. In the first part of this thesis, we study the potential for tuning MPI parallelism. More specifically, we explore automatic techniques to overlap communication and computation. We propose a speculative messaging technique that increases the overlap and requires no changes of the original MPI application. Our technique automatically identifies the application’s MPI activity and reinterprets that activity using optimally placed non-blocking MPI requests. We demonstrate that this overlapping technique increases the asynchronism of MPI messages, maximizing the overlap, and consequently leading to execution speedup and higher tolerance to bandwidth reduction. However, in the case of realistic scientific workloads, we show that the overlapping potential is significantly limited by the pattern by which each MPI process locally operates on MPI messages. In the second part of this thesis, we study the potential for tuning hybrid MPI/OmpSs parallelism. We try to gain a better understanding of the parallelism of hybrid MPI/OmpSs applications in order to evaluate how these applications would execute on future machines and to predict the execution bottlenecks that are likely to emerge. We explore how MPI/OmpSs applications could scale on the parallel machine with hundreds of cores per node. Furthermore, we investigate how this high parallelism within each node would reflect on the network constraints. We especially focus on identifying critical code sections in MPI/OmpSs. We devised a technique that quickly evaluates, for a given MPI/OmpSs application and the selected target machine, which code section should be optimized in order to gain the highest performance benefits. Also, this thesis studies techniques to quickly explore the potential OmpSs parallelism inherent in applications. We provide mechanisms to easily evaluate potential parallelism of any task decomposition. Furthermore, we describe an iterative trialand-error approach to search for a task decomposition that will expose sufficient parallelism for a given target machine. Finally, we explore potential of automating the iterative approach by capturing the programmers’ experience into an expert system that can autonomously lead the search process. Also, throughout the work on this thesis, we designed development tools that can be useful to other researchers in the field. The most advanced of these tools is Tareador – a tool to help porting MPI applications to MPI/OmpSs programming model. Tareador provides a simple interface to propose some decomposition of a code into OmpSs tasks. Tareador dynamically calculates data dependencies among the annotated tasks, and automatically estimates the potential OmpSs parallelization. Furthermore, Tareador gives additional hints on how to complete the process of porting the application to OmpSs. Tareador already proved itself useful, by being included in the academic classes on parallel programming at UPC.La programación paralela consiste en dividir un problema de computación entre múltiples unidades de procesamiento y definir como interactúan (comunicación y sincronización) para garantizar un resultado correcto. El rendimiento de un programa paralelo normalmente está muy lejos de ser óptimo: el desequilibrio de la carga computacional y la excesiva interacción entre las unidades de procesamiento a menudo causa ciclos perdidos, reduciendo la eficiencia de la computación paralela. En esta tesis proponemos técnicas orientadas a explotar mejor el paralelismo en aplicaciones paralelas, poniendo énfasis en técnicas que incrementan el asincronismo. En teoría, estas técnicas prometen múltiples beneficios. Primero, tendrían que mitigar el retraso de la comunicación y la sincronización, y por lo tanto incrementar el rendimiento global. Además, la calibración de la paralelización tendría que exponer un paralelismo adicional, incrementando la escalabilidad de la ejecución. Finalmente, un incremente en el asincronismo proveería una tolerancia mayor a redes de comunicación lentas y ruido externo. En la primera parte de la tesis, estudiamos el potencial para la calibración del paralelismo a través de MPI. En concreto, exploramos técnicas automáticas para solapar la comunicación con la computación. Proponemos una técnica de mensajería especulativa que incrementa el solapamiento y no requiere cambios en la aplicación MPI original. Nuestra técnica identifica automáticamente la actividad MPI de la aplicación y la reinterpreta usando solicitudes MPI no bloqueantes situadas óptimamente. Demostramos que esta técnica maximiza el solapamiento y, en consecuencia, acelera la ejecución y permite una mayor tolerancia a las reducciones de ancho de banda. Aún así, en el caso de cargas de trabajo científico realistas, mostramos que el potencial de solapamiento está significativamente limitado por el patrón según el cual cada proceso MPI opera localmente en el paso de mensajes. En la segunda parte de esta tesis, exploramos el potencial para calibrar el paralelismo híbrido MPI/OmpSs. Intentamos obtener una comprensión mejor del paralelismo de aplicaciones híbridas MPI/OmpSs para evaluar de qué manera se ejecutarían en futuras máquinas. Exploramos como las aplicaciones MPI/OmpSs pueden escalar en una máquina paralela con centenares de núcleos por nodo. Además, investigamos cómo este paralelismo de cada nodo se reflejaría en las restricciones de la red de comunicación. En especia, nos concentramos en identificar secciones críticas de código en MPI/OmpSs. Hemos concebido una técnica que rápidamente evalúa, para una aplicación MPI/OmpSs dada y la máquina objetivo seleccionada, qué sección de código tendría que ser optimizada para obtener la mayor ganancia de rendimiento. También estudiamos técnicas para explorar rápidamente el paralelismo potencial de OmpSs inherente en las aplicaciones. Proporcionamos mecanismos para evaluar fácilmente el paralelismo potencial de cualquier descomposición en tareas. Además, describimos una aproximación iterativa para buscar una descomposición en tareas que mostrará el suficiente paralelismo en la máquina objetivo dada. Para finalizar, exploramos el potencial para automatizar la aproximación iterativa. En el trabajo expuesto en esta tesis hemos diseñado herramientas que pueden ser útiles para otros investigadores de este campo. La más avanzada es Tareador, una herramienta para ayudar a migrar aplicaciones al modelo de programación MPI/OmpSs. Tareador proporciona una interfaz simple para proponer una descomposición del código en tareas OmpSs. Tareador también calcula dinámicamente las dependencias de datos entre las tareas anotadas, y automáticamente estima el potencial de paralelización OmpSs. Por último, Tareador da indicaciones adicionales sobre como completar el proceso de migración a OmpSs. Tareador ya se ha mostrado útil al ser incluido en las clases de programación de la UPC

    The exploitation of parallelism on shared memory multiprocessors

    Get PDF
    PhD ThesisWith the arrival of many general purpose shared memory multiple processor (multiprocessor) computers into the commercial arena during the mid-1980's, a rift has opened between the raw processing power offered by the emerging hardware and the relative inability of its operating software to effectively deliver this power to potential users. This rift stems from the fact that, currently, no computational model with the capability to elegantly express parallel activity is mature enough to be universally accepted, and used as the basis for programming languages to exploit the parallelism that multiprocessors offer. To add to this, there is a lack of software tools to assist programmers in the processes of designing and debugging parallel programs. Although much research has been done in the field of programming languages, no undisputed candidate for the most appropriate language for programming shared memory multiprocessors has yet been found. This thesis examines why this state of affairs has arisen and proposes programming language constructs, together with a programming methodology and environment, to close the ever widening hardware to software gap. The novel programming constructs described in this thesis are intended for use in imperative languages even though they make use of the synchronisation inherent in the dataflow model by using the semantics of single assignment when operating on shared data, so giving rise to the term shared values. As there are several distinct parallel programming paradigms, matching flavours of shared value are developed to permit the concise expression of these paradigms.The Science and Engineering Research Council

    Energy-Aware Data Management on NUMA Architectures

    Get PDF
    The ever-increasing need for more computing and data processing power demands for a continuous and rapid growth of power-hungry data center capacities all over the world. As a first study in 2008 revealed, energy consumption of such data centers is becoming a critical problem, since their power consumption is about to double every 5 years. However, a recently (2016) released follow-up study points out that this threatening trend was dramatically throttled within the past years, due to the increased energy efficiency actions taken by data center operators. Furthermore, the authors of the study emphasize that making and keeping data centers energy-efficient is a continuous task, because more and more computing power is demanded from the same or an even lower energy budget, and that this threatening energy consumption trend will resume as soon as energy efficiency research efforts and its market adoption are reduced. An important class of applications running in data centers are data management systems, which are a fundamental component of nearly every application stack. While those systems were traditionally designed as disk-based databases that are optimized for keeping disk accesses as low a possible, modern state-of-the-art database systems are main memory-centric and store the entire data pool in the main memory, which replaces the disk as main bottleneck. To scale up such in-memory database systems, non-uniform memory access (NUMA) hardware architectures are employed that face a decreased bandwidth and an increased latency when accessing remote memory compared to the local memory. In this thesis, we investigate energy awareness aspects of large scale-up NUMA systems in the context of in-memory data management systems. To do so, we pick up the idea of a fine-grained data-oriented architecture and improve the concept in a way that it keeps pace with increased absolute performance numbers of a pure in-memory DBMS and scales up on NUMA systems in the large scale. To achieve this goal, we design and build ERIS, the first scale-up in-memory data management system that is designed from scratch to implement a data-oriented architecture. With the help of the ERIS platform, we explore our novel core concept for energy awareness, which is Energy Awareness by Adaptivity. The concept describes that software and especially database systems have to quickly respond to environmental changes (i.e., workload changes) by adapting themselves to enter a state of low energy consumption. We present the hierarchically organized Energy-Control Loop (ECL), which is a reactive control loop and provides two concrete implementations of our Energy Awareness by Adaptivity concept, namely the hardware-centric Resource Adaptivity and the software-centric Storage Adaptivity. Finally, we will give an exhaustive evaluation regarding the scalability of ERIS as well as our adaptivity facilities

    A Survey on the Evolution of Stream Processing Systems

    Full text link
    Stream processing has been an active research field for more than 20 years, but it is now witnessing its prime time due to recent successful efforts by the research community and numerous worldwide open-source communities. This survey provides a comprehensive overview of fundamental aspects of stream processing systems and their evolution in the functional areas of out-of-order data management, state management, fault tolerance, high availability, load management, elasticity, and reconfiguration. We review noteworthy past research findings, outline the similarities and differences between early ('00-'10) and modern ('11-'18) streaming systems, and discuss recent trends and open problems.Comment: 34 pages, 15 figures, 5 table
    corecore