2,094 research outputs found

    A Novel Method for Optimal Solution of Fuzzy Chance Constraint Single-Period Inventory Model

    Get PDF
    A method is proposed for solving single-period inventory fuzzy probabilistic model (SPIFPM) with fuzzy demand and fuzzy storage space under a chance constraint. Our objective is to maximize the total profit for both overstock and understock situations, where the demand D~j for each product j in the objective function is considered as a fuzzy random variable (FRV) and with the available storage space area W~, which is also a FRV under normal distribution and exponential distribution. Initially we used the weighted sum method to consider both overstock and understock situations. Then the fuzziness of the model is removed by ranking function method and the randomness of the model is removed by chance constrained programming problem, which is a deterministic nonlinear programming problem (NLPP) model. Finally this NLPP is solved by using LINGO software. To validate and to demonstrate the results of the proposed model, numerical examples are given

    A Hybrid Fuzzy Approach to Bullwhip Effect in Supply Chain Networks

    Get PDF

    A fuzzy optimization approach for procurement transport operational planning in an automobile supply chain

    Full text link
    We consider a real-world automobile supply chain in which a first-tier supplier serves an assembler and determines its procurement transport planning for a second-tier supplier by using the automobile assembler's demand information, the available capacity of trucks and inventory levels. The proposed fuzzy multi-objective integer linear programming model (FMOILP) improves the transport planning process for material procurement at the first-tier supplier level, which is subject to product groups composed of items that must be ordered together, order lot sizes, fuzzy aspiration levels for inventory and used trucks and uncertain truck maximum available capacities and minimum percentages of demand in stock. Regarding the defuzzification process, we apply two existing methods based on the weighted average method to convert the FMOILP into a crisp MOILP to then apply two different aggregation functions, which we compare, to transform this crisp MOILP into a single objective MILP model. A sensitivity analysis is included to show the impact of the objectives weight vector on the final solutions. The model, based on the full truck load material pick method, provides the quantity of products and number of containers to be loaded per truck and period. An industrial automobile supply chain case study demonstrates the feasibility of applying the proposed model and the solution methodology to a realistic procurement transport planning problem. The results provide lower stock levels and higher occupation of the trucks used to fulfill both demand and minimum inventory requirements than those obtained by the manual spreadsheet-based method. (C) 2014 Elsevier Inc. All rights reserved.This work has been funded partly by the Spanish Ministry of Science and Technology project: Production technology based on the feedback from production, transport and unload planning and the redesign of warehouses decisions in the supply chain (Ref. DPI2010-19977) and by the Universitat Politecnica de Valencia project 'Material Requirement Planning Fourth Generation (MRPIV) (Ref. PAID-05-12)'.Díaz-Madroñero Boluda, FM.; Peidro Payá, D.; Mula, J. (2014). A fuzzy optimization approach for procurement transport operational planning in an automobile supply chain. Applied Mathematical Modelling. 38(23):5705-5725. https://doi.org/10.1016/j.apm.2014.04.053S57055725382

    The Fuzzy Economic Order Quantity Problem with a Finite Production Rate and Backorders

    Get PDF
    The track of developing Economic Order Quantity (EOQ) models with uncertainties described as fuzzy numbers has been very lucrative. In this paper, a fuzzy Economic Production Quantity (EPQ) model is developed to address a specific problem in a theoretical setting. Not only is the production time finite, but also backorders are allowed. The uncertainties, in the industrial context, come from the fact that the production availability is uncertain as well as the demand. These uncertainties will be handled with fuzzy numbers and the analytical solution to the optimization problem will be obtained. A theoretical example from the process industry is also given to illustrate the new model

    A FUZZY GOAL PROGRAMMING APPROACH FOR SOLVING MULTI-OBJECTIVE SUPPLY CHAIN NETWORK PROBLEMS WITH PARETO-DISTRIBUTED RANDOM VARIABLES

    Get PDF
    Uncertainty is unavoidable and addressing the same is inevitable. That everything is available at our doorstep is due to a well-managed modern global supply chain, which takes place despite its efficiency and effectiveness being threatened by various sources of uncertainty originating from the demand side, supply side, manufacturing process, and planning and control systems. This paper addresses the demand- and supply-rooted uncertainty. In order to cope with uncertainty within the constrained multi-objective supply chain network, this paper develops a fuzzy goal programming methodology, with solution procedures. The probabilistic fuzzy goal multi-objective supply chain network (PFG-MOSCN) problem is thus formulated and then solved by three different approaches, namely, simple additive goal programming approach, weighted goal programming approach, and pre-emptive goal programming approach, to obtain the optimal solution. The proposed work links fuzziness in transportation cost and delivery time with randomness in demand and supply parameters. The results may prove to be important for operational managers in manufacturing units, interested in optimizing transportation costs and delivery time, and implicitly, in optimizing profits. A numerical example is provided to illustrate the proposed model

    Diseño metodológico de un sistema de medición del desempeño para la cadena de suministros de astilleros en Colombia

    Get PDF
    The design of a performance measurement system for the Colombian shipyard supply chain is shown in this paper, using a model that integrates the principles of the Balanced Scorecard with the fuzzy sets theory to treat uncertainty associated with selected logistics indicators, enabling better supply chain management.El presente artículo muestra el diseño de un sistema de medición del desempeño para la cadena de suministros de los astilleros colombianos, usando un modelo que integra los principios del Balanced Scorecard con la teoría de conjuntos difusos para el tratamiento de la incertidumbre asociada a los indicadores logísticos seleccionados, posibilitando mejor gestión de dicha cadena

    A Fuzzy Economic Order Quantity (EOQ) Model with Consideration of Quality Items, Inspection Errors and Sales Return

    Get PDF
    In this paper, we develop an economic order quantity model with imperfect quality, inspection errors and sales returns, where upon the arrival of order lot, 100% screening process is performed and the items of imperfect quality are sold as a single batch at a lessen price, prior to receiving the next shipment. The screening process to remove the defective items may involve two types of errors. In this article we extend the Khan et al. (2011) model by considering demand and defective rate in fuzzy sense and also sales return in our model. The objective is to determine the optimal order lot size to maximize the total profit. We use the signed distance, a ranking method for fuzzy numbers, to find the approximate of total profit per unit time in the fuzzy sense. The impact of fuzziness of fraction of defectives and demand rate on optimal solution is showed by numerical example

    Simplexity: A Hybrid Framework for Managing System Complexity

    Get PDF
    Knowledge management, management of mission critical systems, and complexity management rely on a triangular support connection. Knowledge management provides ways of creating, corroborating, collecting, combining, storing, transferring, and sharing the know-why and know-how for reactively and proactively handling the challenges of mission critical systems. Complexity management, operating on “complexity” as an umbrella term for size, mass, diversity, ambiguity, fuzziness, randomness, risk, change, chaos, instability, and disruption, delivers support to both knowledge and systems management: on the one hand, support for dealing with the complexity of managing knowledge, i.e., furnishing criteria for a common and operationalized terminology, for dealing with mediating and moderating concepts, paradoxes, and controversial validity, and, on the other hand, support for systems managers coping with risks, lack of transparence, ambiguity, fuzziness, pooled and reciprocal interdependencies (e.g., for attaining interoperability), instability (e.g., downtime, oscillations, disruption), and even disasters and catastrophes. This support results from the evident intersection of complexity management and systems management, e.g., in the shape of complex adaptive systems, deploying slack, establishing security standards, and utilizing hybrid concepts (e.g., hybrid clouds, hybrid procedures for project management). The complexity-focused manager of mission critical systems should deploy an ambidextrous strategy of both reducing complexity, e.g., in terms of avoiding risks, and of establishing a potential to handle complexity, i.e., investing in high availability, business continuity, slack, optimal coupling, characteristics of high reliability organizations, and agile systems. This complexity-focused hybrid approach is labeled “simplexity.” It constitutes a blend of complexity reduction and complexity augmentation, relying on the generic logic of hybrids: the strengths of complexity reduction are capable of compensating the weaknesses of complexity augmentation and vice versa. The deficiencies of prevalent simplexity models signal that this blended approach requires a sophisticated architecture. In order to provide a sound base for coping with the meta-complexity of both complexity and its management, this architecture comprises interconnected components, domains, and dimensions as building blocks of simplexity as well as paradigms, patterns, and parameters for managing simplexity. The need for a balanced paradigm for complexity management, capable of overcoming not only the prevalent bias of complexity reduction but also weaknesses of prevalent concepts of simplexity, serves as the starting point of the argumentation in this chapter. To provide a practical guideline to meet this demand, an innovative model of simplexity is conceived. This model creates awareness for differentiating components, dimensions, and domains of complexity management as well as for various species of interconnectedness, such as the aligned upsizing and downsizing of capacities, the relevance of diversity management (e.g., in terms of deviations and errors), and the scope of risk management instruments. Strategies (e.g., heuristics, step-by-step procedures) and tools for managing simplexity-guided projects are outlined
    corecore