3,731 research outputs found

    Effect of reconstituted method on shear strength properties of peat

    Get PDF
    Peat is an organic soil contains more than 75% organic content. Shear strength of the soil is one of the most important parameters in engineering design, especially during the pre-construction and post-construction periods, since used to evaluate the foundation and slope stability of soil. Peat normally known as a soil that has very low shear strength and to determine and understand the shear strength of the peat is difficult in geotechnical engineering because of a few factors such as the origin of the soil, water content, organic matter and the degree of humification. The aim of this study was to determine the effective undrained shear strength properties of reconstituted peat. All the reconstituted peat samples were of the size that passing opening sieve 0.425mm, 1.000mm, 2.360mm and 3.350mm and were preconsolidated at pressures of 50 kPa, 80 kPa and 100 kPa. The relationship deviator stress- strain, σdmax and excess pore water pressure, Δu, shows that in both of reconstituted and undisturbed peat gradually increased when confining pressure, σ’ and pre- consolidation pressure, σc increased. As a conclusion, the undrained shear strength properties result obtained shows that the RS3.350 has higher strength than RS0.425, RS1.000 and RS2.360. However, the entire reconstituted peat sample shows the increment value of the shear strength with the increment of peat size and pre- consolidation pressure. For comparison purposes, the undrained shear strength properties result obtained shows that the reconstituted peat has higher strength than undisturbed peat. The factors that contributed to the higher shear strength properties in this study are segregation of peat size, pre- consolidation pressure, initial void ratio and also the physical properties such as initial water content, fiber content and liquid limit

    Monitoring and management of power transmission dynamics in an industrial smart grid

    Get PDF
    This article is a position paper whose purpose is to give the context for presentations in a special session at PowerTech 2013. The special session is being proposed by the EU FP7 Real-Smart Consortium, a Marie Curie Industry-Academic Pathways and Partnerships project. The paper gives an overview of topics on modeling, monitoring and management of power transmission dynamics with participation from large industrial loads. © 2013 IEEE

    Electromechanical Dynamics of High Photovoltaic Power Grids

    Get PDF
    This dissertation study focuses on the impact of high PV penetration on power grid electromechanical dynamics. Several major aspects of power grid electromechanical dynamics are studied under high PV penetration, including frequency response and control, inter-area oscillations, transient rotor angle stability and electromechanical wave propagation.To obtain dynamic models that can reasonably represent future power systems, Chapter One studies the co-optimization of generation and transmission with large-scale wind and solar. The stochastic nature of renewables is considered in the formulation of mixed-integer programming model. Chapter Two presents the development procedures of high PV model and investigates the impact of high PV penetration on frequency responses. Chapter Three studies the impact of PV penetration on inter-area oscillations of the U.S. Eastern Interconnection system. Chapter Four presents the impacts of high PV on other electromechanical dynamic issues, including transient rotor angle stability and electromechanical wave propagation. Chapter Five investigates the frequency response enhancement by conventional resources. Chapter Six explores system frequency response improvement through real power control of wind and PV. For improving situation awareness and frequency control, Chapter Seven studies disturbance location determination based on electromechanical wave propagation. In addition, a new method is developed to generate the electromechanical wave propagation speed map, which is useful to detect system inertia distribution change. Chapter Eight provides a review on power grid data architectures for monitoring and controlling power grids. Challenges and essential elements of data architecture are analyzed to identify various requirements for operating high-renewable power grids and a conceptual data architecture is proposed. Conclusions of this dissertation study are given in Chapter Nine

    Frequency support characteristics of grid-interactive power converters based on the synchronous power controller

    Get PDF
    Grid-interactive converters with primary frequency control and inertia emulation have emerged and are promising for future renewable generation plants because of the contribution in power system stabilization. This paper gives a synchronous active power control solution for gridinteractive converters , as a way to emulate synchronous generators for inerita characteristics and load sharing. As design considerations, the virtual angle stability and transient response are both analyzed, and the detailed implementation structure is also given without entailing any difficulty in practice. The analytical and experimental validation of frequency support characteristics differentiates the work from other publications on generator emulation control. The 10 kW simulation and experimental frequency sweep tests on a regenerative source test bed present good performance of the proposed control in showing inertia and droop characteristics, as well as the controllable transient response.Peer ReviewedPostprint (author's final draft

    Neural Network-Based Stabilizer for the Improvement of Power System Dynamic Performance

    Get PDF
    This paper develops an adaptive control coordination scheme for power system stabilizers (PSSs) to improve the oscillation damping and dynamic performance of interconnected multimachine power system. The scheme was based on the use of a neural network which identifies online the optimal controller parameters. The inputs to the neural network include the active- and reactive- power of the synchronous generators which represent the power loading on the system, and elements of the reduced nodal impedance matrix for representing the power system configuration. The outputs of the neural network were the parameters of the PSSs which lead to optimal oscillation damping for the prevailing system configuration and operating condition. For a representative power system, the neural network has been trained and tested for a wide range of credible operating conditions and contingencies. Both eigenvalue calculations and time-domain simulations were used in the testing and verification of the performance of the neural network-based stabilizer

    Wide-Area Control Schemes to Improve Small Signal Stability in Power Systems

    Get PDF
    One of the main concerns for the secure and reliable operation of power systems is the small signal stability problem. In the complex and highly interconnected structure of future power systems, relying solely on operator responses and conventional controls cannot assure reliability. Therefore, there is a need for advanced Wide-Area Control Schemes (WACS) that can automatically respond to degradation of reliability in the system. The main objective of this dissertation is to address two key challenges regarding the design and implementation of wide-area control schemes for damping inter-area oscillations. First is the high communication cost associated with optimal centralized control approaches. As power networks are large-scale systems, both the synthesis and the implementation of centralized controllers suggested by most of the previous studies are often impossible in practice. Second is the difficulty of obtaining accurate system-wide dynamic models for initiating and updating the control design. In this research, we introduced wide-area damping control strategies that not only ensure the small signal stability with the desired performance but also consider communication and model information limitations in the design. A state feedback formulation is proposed that aims to simultaneously optimize a standard Linear Quadratic Regulator (LQR) cost criterion and induce a pre-defined communication structure. We solved the proposed problem with three different objectives to target a specific wide-area damping control design challenge in each setting. First, the communication structure is enforced as a constraint in the optimization and solved for a large idealized power network with information symmetry. Second, to make the method suitable for systems with arbitrary structures and information patterns, we proposed a group-sparse regularization to be added to the optimization cost function. Applications of the method for inducing the desired communication network and finding effective measurement and control signal combinations were also investigated. Third, we paired the proposed optimal control with a real-time model identification approach, to create a wide-area control framework that is capable of dealing with model information limitations and inaccuracies in online implementation. The performances of the proposed wide-area damping control architectures are validated through nonlinear simulations on different test systems

    Data-Driven Diagnostics of Mechanism and Source of Sustained Oscillations

    Full text link
    Sustained oscillations observed in power systems can damage equipment, degrade the power quality and increase the risks of cascading blackouts. There are several mechanisms that can give rise to oscillations, each requiring different countermeasure to suppress or eliminate the oscillation. This work develops mathematical framework for analysis of sustained oscillations and identifies statistical signatures of each mechanism, based on which a novel oscillation diagnosis method is developed via real-time processing of phasor measurement units (PMUs) data. Case studies show that the proposed method can accurately identify the exact mechanism for sustained oscillation, and meanwhile provide insightful information to locate the oscillation sources.Comment: The paper has been accepted by IEEE Transactions on Power System
    • 

    corecore