178 research outputs found

    River Ecological Restoration and Groundwater Artificial Recharge

    Get PDF
    Three of the eleven papers focused on groundwater recharge and its impacts on the groundwater regime, in which recharge was caused by riverbed leakage from river ecological restoration (artificial water replenishment). The issues of the hydrogeological parameters involved (such as the influence radius) were also reconsidered. Six papers focused on the impact of river ecological replenishment and other human activities on river and watershed ecology, and on groundwater quality and use function. The issues of ecological security at the watershed scale and deterioration of groundwater quality were of particular concern. Two papers focused on water resources carrying capacity and water resources reallocation at the regional scale, in the context of the fact that ecological water demand has been a significant topic of concern. The use of unconventional water resources such as brackish water has been emphasized in the research in this issue

    Groundwater overexploitation in the North China Plain: A path to sustainability

    Get PDF
    Over-pumping of aquifers is a worldwide problem, mainly caused by agricultural water use. Among its consequences are the falling dry of streams and wetlands, soil subsidence, die-off of phreatophytic vegetation, saline water intrusion, increased pumping cost and loss of storage needed for drought relief. Stopping or reversing the trend requires management interventions. The North China Plain serves as an example. A management system is set up for a typical county. It contains three components: monitoring, decision support based on modelling, and implementation in the field. Besides all monitoring data, the decision support module contains an irrigation calculator, a box model, and a distributed groundwater model to project the outcomes of different water allocation scenarios. In view of grain security, a solution combines an adaptation of the cropping system with imports of surface water from the South. The Open Access book does not only describe the problem and the path to its solution. It also gives access to nine manuals concerning methods used. They include computer programs and the game Save the Water. The Chinese experience should be of considerable interest to other regions in the world which suffer from over-pumping of aquifers

    The modern water-saving agricultural technology: Progress and focus

    Get PDF
    Based on the analysis of water-saving agricultural technology development status and trends in China, and in combination with the development and the needs of modern water-saving agricultural technology, we have put forward a future research emphasis and developing direction of modern watersaving agricultural technology, which include modern biological water-saving technology, unconventional high-efficient and safe-water using technology, water-saving irrigation technology and equipment, dry high-efficient water using technology and new materials regional high-efficient watersaving agriculture comprehensive technology.Key words: Biological water-saving technology, unconventional water resource, water-saving irrigation, dry-land water high-efficient agriculture, technical integration, biotechnology

    Groundwater overexploitation in the North China Plain: A path to sustainability

    Get PDF
    Over-pumping of aquifers is a worldwide problem, mainly caused by agricultural water use. Among its consequences are the falling dry of streams and wetlands, soil subsidence, die-off of phreatophytic vegetation, saline water intrusion, increased pumping cost and loss of storage needed for drought relief. Stopping or reversing the trend requires management interventions. The North China Plain serves as an example. A management system is set up for a typical county. It contains three components: monitoring, decision support based on modelling, and implementation in the field. Besides all monitoring data, the decision support module contains an irrigation calculator, a box model, and a distributed groundwater model to project the outcomes of different water allocation scenarios. In view of grain security, a solution combines an adaptation of the cropping system with imports of surface water from the South. The Open Access book does not only describe the problem and the path to its solution. It also gives access to nine manuals concerning methods used. They include computer programs and the game Save the Water. The Chinese experience should be of considerable interest to other regions in the world which suffer from over-pumping of aquifers

    Air quality and urban sustainable development: the application of machine learning tools

    Full text link
    [EN] Air quality has an efect on a populationÂżs quality of life. As a dimension of sustainable urban development, governments have been concerned about this indicator. This is refected in the references consulted that have demonstrated progress in forecasting pollution events to issue early warnings using conventional tools which, as a result of the new era of big data, are becoming obsolete. There are a limited number of studies with applications of machine learning tools to characterize and forecast behavior of the environmental, social and economic dimensions of sustainable development as they pertain to air quality. This article presents an analysis of studies that developed machine learning models to forecast sustainable development and air quality. Additionally, this paper sets out to present research that studied the relationship between air quality and urban sustainable development to identify the reliability and possible applications in diferent urban contexts of these machine learning tools. To that end, a systematic review was carried out, revealing that machine learning tools have been primarily used for clustering and classifying variables and indicators according to the problem analyzed, while tools such as artifcial neural networks and support vector machines are the most widely used to predict diferent types of events. The nonlinear nature and synergy of the dimensions of sustainable development are of great interest for the application of machine learning tools.Molina-GĂłmez, NI.; DĂ­az-ArĂ©valo, JL.; LĂłpez JimĂ©nez, PA. (2021). Air quality and urban sustainable development: the application of machine learning tools. International Journal of Environmental Science and Technology. 18(4):1-18. https://doi.org/10.1007/s13762-020-02896-6S118184Al-Dabbous A, Kumar P, Khan A (2017) Prediction of airborne nanoparticles at roadside location using a feed–forward artificial neural network. Atmos Pollut Res 8:446–454. https://doi.org/10.1016/j.apr.2016.11.004Antanasijević D, Pocajt V, Povrenović D, Ristić M, Perić-Grujić A (2013) PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization. Sci Total Environ 443:511–519. https://doi.org/10.1016/j.scitotenv.2012.10.110Brink H, Richards JW, Fetherolf M (2016) Real-world machine learning. Richards JW, Fetherolf M (eds) Manning Publications Co. Berkeley, CA. https://www.manning.com/books/real-world-machine-learning. Accessed 26 Apr 2020Cervone G, Franzese P, Ezber Y, Boybeyi Z (2008) Risk assessment of atmospheric emissions using machine learning. Nat Hazard Earth Syst 8:991–1000. https://doi.org/10.5194/nhess-8-991-2008Chen S, Kan G, Li J, Liang K, Hong Y (2018) Investigating China’s urban air quality using big data, information theory, and machine learning. Pol J Environ Stud 27:565–578. https://doi.org/10.15244/pjoes/75159Corani (2005) Air quality prediction in Milan: feed-forward neural networks, pruned neural networks and lazy learning. Ecol Model 185:513–529. https://doi.org/10.1016/j.ecolmodel.2005.01.008Cruz C, GĂłmez A, RamĂ­rez L, Villalva A, Monge O, Varela J, Quiroz J, Duarte H (2017) Calidad del aire respecto de metales (Pb, Cd, Ni, Cu, Cr) y relaciĂłn con salud respiratoria: caso Sonora, MĂ©xico. Rev Int Contam Ambient 33:23–34. https://doi.org/10.20937/RICA.2017.33.esp02.02de Hoogh K, HĂ©ritier H, Stafoggia M, KĂŒnzli N, Kloog I (2018) Modelling daily PM2.5 concentrations at high spatio-temporal resolution across Switzerland. Environ Pollut 233:1147–1154. https://doi.org/10.1016/j.envpol.2017.10.025Franceschi F, Cobo M, Figueredo M (2018) Discovering relationships and forecasting PM10 and PM2.5 concentrations in BogotĂĄ, Colombia, using Artificial Neural Networks, Principal Component Analysis, and k-means clustering. Atmos Pollut Res 9:912–922. https://doi.org/10.1016/j.apr.2018.02.006GarcĂ­a N, Combarro E, del Coz J, Montañes E (2013) A SVM-based regression model to study the air quality at local scale in Oviedo urban area (Northern Spain): a case study. Appl Math Comput 219:8923–8937. https://doi.org/10.1016/j.amc.2013.03.018Gibert K, SĂ nchez-MĂ rre M, Sevilla B (2012) Tools for environmental data mining and intelligent decision support. In iEMSs. Leipzig, Germany. http://www.iemss.org/society/index.php/iemss-2012-proceedings. Accessed 26 Nov 2018Gibert K, SĂ nchez-MarrĂš M, Izquierdo J (2016) A survey on pre-processing techniques: relevant issues in the context of environmental data mining. Ai Commun 29:627–663. https://doi.org/10.3233/AIC-160710Gounaridis D, Chorianopoulos I, Koukoulas S (2018) Exploring prospective urban growth trends under different economic outlooks and land-use planning scenarios: the case of Athens. Appl Geogr 90:134–144. https://doi.org/10.1016/j.apgeog.2017.12.001Holloway J, Mengersen K (2018) Statistical machine learning methods and remote sensing for sustainable development goals: a review. Remote Sens 10:1–21. https://doi.org/10.3390/rs10091365Ifaei P, Karbassi A, Lee S, Yoo Ch (2017) A renewable energies-assisted sustainable development plan for Iran using techno-econo-socio-environmental multivariate analysis and big data. Energy Convers Manag 153:257–277. https://doi.org/10.1016/j.enconman.2017.10.014Kadiyala A, Kumar A (2017a) Applications of R to evaluate environmental data science problems. Environ Prog Sustain 36:1358–1364. https://doi.org/10.1002/ep.12676Kadiyala A, Kumar A (2017b) Vector time series-based radial basis function neural network modeling of air quality inside a public transportation bus using available software. Environ Prog Sustain 36:4–10. https://doi.org/10.1002/ep.12523Karimian H, Li Q, Wu Ch, Qi Y, Mo Y, Chen G, Zhang X, Sachdeva S (2019) Evaluation of different machine learning approaches to forecasting PM2.5 mass concentrations. Aerosol Air Qual Res 19:1400–1410. https://doi.org/10.4209/aaqr.2018.12.0450Krzyzanowski M, Apte J, Bonjour S, Brauer M, Cohen A, PrĂŒss-Ustun A (2014) Air pollution in the mega-cities. Curr Environ Health Rep 1:185–191. https://doi.org/10.1007/s40572-014-0019-7LĂ€ssig K, Morik (2016) Computat sustainability. Springer, Berlin. https://doi.org/10.1007/978-3-319-31858-5Li Y, Wu Y-X, Zeng Z-X, Guo L (2006) Research on forecast model for sustainable development of economy-environment system based on PCA and SVM. In: Proceedings of the 2006 international conference on machine learning and cybernetics, vol 2006. IEEE, Dalian, China, pp 3590–3593. https://doi.org/10.1109/ICMLC.2006.258576Liu B-Ch, Binaykia A, Chang P-Ch, Tiwari M, Tsao Ch-Ch (2017) Urban air quality forecasting based on multi- dimensional collaborative support vector regression (SVR): a case study of Beijing-Tianjin-Shijiazhuang. PLoS ONE 12:1–17. https://doi.org/10.1371/journal.pone.0179763Lubell M, Feiock R, Handy S (2009) City adoption of environmentally sustainable policies in California’s Central Valley. J Am Plan Assoc 75:293–308. https://doi.org/10.1080/01944360902952295Ma D, Zhang Z (2016) Contaminant dispersion prediction and source estimation with integrated Gaussian-machine learning network model for point source emission in atmosphere. J Hazard Mater 311:237–245. https://doi.org/10.1016/j.jhazmat.2016.03.022Madu C, Kuei N, Lee P (2017) Urban sustainability management: a deep learning perspective. Sustain Cities Soc 30:1–17. https://doi.org/10.1016/j.scs.2016.12.012Mellos K (1988) Theory of eco-development. In: Perspectives on ecology. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-19598-5_4Ni XY, Huang H, Du WP (2017) Relevance analysis and short-term prediction of PM2.5 concentrations in Beijing based on multi-source data. Atmos Environ 150:146–161. https://doi.org/10.1016/j.atmosenv.2016.11.054Oprea M, Dragomir E, Popescu M, Mihalache S (2016) Particulate matter air pollutants forecasting using inductive learning approach. Rev Chim 67:2075–2081Paas B, Stienen J, VorlĂ€nder M, Schneider Ch (2017) Modelling of urban near-road atmospheric PM concentrations using an artificial neural network approach with acoustic data input. Environments 4:1–25. https://doi.org/10.3390/environments4020026Pandey G, Zhang B, Jian L (2013) Predicting submicron air pollution indicators: a machine learning approach. Environ Sci Proc Impacts 15:996–1005. https://doi.org/10.1039/c3em30890aPeng H, Lima A, Teakles A, Jin J, Cannon A, Hsieh W (2017) Evaluating hourly air quality forecasting in Canada with nonlinear updatable machine learning methods. Air Qual Atmos Health 10:195–211. https://doi.org/10.1007/s11869-016-0414-3PĂ©rez-OrtĂ­z M, de La Paz-MarĂ­n M, GutiĂ©rrez PA, HervĂĄs-MartĂ­nez C (2014) Classification of EU countries’ progress towards sustainable development based on ordinal regression techniques. Knowl Based Syst 66:178–189. https://doi.org/10.1016/j.knosys.2014.04.041Phillis Y, Kouikoglou V, Verdugo C (2017) Urban sustainability assessment and ranking of cities. Comput Environ Urban 64:254–265. https://doi.org/10.1016/j.compenvurbsys.2017.03.002Saeed S, Hussain L, Awan I, Idris A (2017) Comparative analysis of different statistical methods for prediction of PM2.5 and PM10 concentrations in advance for several hours. Int J Comput Sci Netw Secur 17:45–52Sayegh A, Munir S, Habeebullah T (2014) Comparing the performance of statistical models for predicting PM10 concentrations. Aerosol Air Qual Res 14:653–665. https://doi.org/10.4209/aaqr.2013.07.0259Shaban K, Kadri A, Rezk E (2016) Urban air pollution monitoring system with forecasting models. IEEE Sens J 16:2598–2606. https://doi.org/10.1109/JSEN.2016.2514378Sierra B (2006) Aprendizaje automĂĄtico conceptos bĂĄsicos y avanzados Aspectos prĂĄcticos utilizando el software Weka. Madrid Pearson Prentice Hall, MadridSingh K, Gupta S, Rai P (2013) Identifying pollution sources and predicting urban air quality using ensemble learning methods. Atmos Environ 80:426–437. https://doi.org/10.1016/j.atmosenv.2013.08.023Song L, Pang S, Longley I, Olivares G, Sarrafzadeh A (2014) Spatio-temporal PM2.5 prediction by spatial data aided incremental support vector regression. In: International joint conference on neural networks. IEEE, Beijing, pp 623–630. https://doi.org/10.1109/IJCNN.2014.6889521Souza R, Coelho G, da Silva A, Pozza S (2015) Using ensembles of artificial neural networks to improve PM10 forecasts. Chem Eng Trans 43:2161–2166. https://doi.org/10.3303/CET1543361SuĂĄrez A, GarcĂ­a PJ, Riesgo P, del Coz JJ, Iglesias-RodrĂ­guez FJ (2011) Application of an SVM-based regression model to the air quality study at local scale in the AvilĂ©s urban area (Spain). Math Comput Model 54:453–1466. https://doi.org/10.1016/j.mcm.2011.04.017Tamas W, Notton G, Paoli C, Nivet M, Voyant C (2016) Hybridization of air quality forecasting models using machine learning and clustering: an original approach to detect pollutant peaks. Aerosol Air Qual Res 16:405–416. https://doi.org/10.4209/aaqr.2015.03.0193Toumi O, Le Gallo J, Ben Rejeb J (2017) Assessment of Latin American sustainability. Renew Sustain Energy Rev 78:878–885. https://doi.org/10.1016/j.rser.2017.05.013Tzima F, Mitkas P, Voukantsis D, Karatzas K (2011) Sparse episode identification in environmental datasets: the case of air quality assessment. Expert Syst Appl 38:5019–5027. https://doi.org/10.1016/j.eswa.2010.09.148United Nations, Department of Economic and Social Affairs (2019) World urbanization prospects The 2018 Revision. New York. https://doi.org/10.18356/b9e995fe-enWang B (2019) Applying machine-learning methods based on causality analysis to determine air quality in China. Pol J Environ Stud 28:3877–3885. https://doi.org/10.15244/pjoes/99639Wang X, Xiao Z (2017) Regional eco-efficiency prediction with support vector spatial dynamic MIDAS. J Clean Prod 161:165–177. https://doi.org/10.1016/j.jclepro.2017.05.077Wang W, Men C, Lu W (2008) Online prediction model based on support vector machine. Neurocomputing 71:550–558. https://doi.org/10.1016/j.neucom.2007.07.020WCED (1987) Report of the world commission on environment and development: our common future: report of the world commission on environment and development. WCED, Oslo. https://doi.org/10.1080/07488008808408783Weizhen H, Zhengqiang L, Yuhuan Z, Hua X, Ying Z, Kaitao L, Donghui L, Peng W, Yan M (2014) Using support vector regression to predict PM10 and PM2.5. In: IOP conference series: earth and environmental science, vol 17. IOP. https://doi.org/10.1088/1755-1315/17/1/012268WHO (2016) OMS | La OMS publica estimaciones nacionales sobre la exposiciĂłn a la contaminaciĂłn del aire y sus repercusiones para la salud. WHO. http://www.who.int/mediacentre/news/releases/2016/air-pollution-estimates/es/. Accesed 26 Nov 2018Yeganeh N, Shafie MP, Rashidi Y, Kamalan H (2012) Prediction of CO concentrations based on a hybrid partial least square and support vector machine model. Atmos Environ 55:357–365. https://doi.org/10.1016/j.atmosenv.2012.02.092Zalakeviciute R, Bastidas M, Buenaño A, Rybarczyk Y (2020) A traffic-based method to predict and map urban air quality. Appl Sci. https://doi.org/10.3390/app10062035Zeng L, Guo J, Wang B, Lv J, Wang Q (2019) Analyzing sustainability of Chinese coal cities using a decision tree modeling approach. Resour Policy 64:101501. https://doi.org/10.1016/j.resourpol.2019.101501Zhan Y, Luo Y, Deng X, Grieneisen M, Zhang M, Di B (2018) Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment. Environ Pollut 233:464–473. https://doi.org/10.1016/j.envpol.2017.10.029Zhang Y, Huan Q (2006) Research on the evaluation of sustainable development in Cangzhou city based on neural-network-AHP. In: Proceedings of the fifth international conference on machine learning and cybernetics, vol 2006. pp 3144–3147. https://doi.org/10.1109/ICMLC.2006.258407Zhang Y, Shang W, Wu Y (2009) Research on sustainable development based on neural network. In: 2009 Chinese control and decision conference. IEEE, pp 3273–3276. https://doi.org/10.1109/CCDC.2009.5192476Zhou Y, Chang F-J, Chang L-Ch, Kao I-F, Wang YS (2019) Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts. J Clean Prod 209:134–145. https://doi.org/10.1016/j.jclepro.2018.10.24

    Sustainable Use of Soils and Water: The Role of Environmental Land Use Conflicts

    Get PDF
    This book on the sustainable use of soils and water addressed a variety of issues related to the utopian desire for environmental sustainability and the deviations from this scene observed in the real world. Competing interests for land are frequently a factor in land degradation, especially where the adopted land uses do not conform with the land capability (the natural use of soil). The concerns of researchers about these matters are presented in the articles comprising this Special Issue book. Various approaches were used to assess the (im)balance between economic profit and environmental conservation in various regions, in addition to potential routes to bring landscapes back to a sustainable status being disclosed

    A Balance between Ideals and Reality — Establishing and Evaluating a Resilient City Indicator System for Central Chinese Cities

    Get PDF
    Recent years have seen a gradual shift in focus of international policies from a national and regional perspective to that of cities, a shift which is closely related to the rapid urbanization of developing countries. As revealed in the 2011 Revision of the World Urbanization Prospects published by the United Nations, 51% of the global population (approximately 3.6 billion people) lives in cities. The report predicts that by 2050, the world’s urban population will increase by 2.3 billion, making up 68% of the population. The growth of urbanization in the next few decades is expected to primarily come from developing countries, one third of which will be in China and India. With rapid urbanization and the ongoing growth of mega cities, cities must become increasingly resilient and intelligent to cope with numerous challenges and crises like droughts and floods arising from extreme climate, destruction brought by severe natural disasters, and aggregated social contradictions resulting from economic crises. All cities face the urban development dynamics and uncertainties arising from these problems. Under such circumstances, cities are considered the critical path from crisis to prosperity, so scholars and organizations have proposed the construction of “resilient cities.” On the one hand, this theory emphasizes cities’ defenses and buffering capacity against disasters, crises and uncertainties, as well as recovery after destruction; on the other hand, it highlights the learning capacity of urban systems, identification of opportunities amid challenges, and maintenance of development vitality. Some scholars even believe that urban resilience is a powerful supplement to sustainable development. Hence, resilience assessment has become the latest and most important perspective for evaluating the development and crisis defense capacity of cities. Rather than a general abstract concept, urban resilience is a comprehensive measurement of a city’s level of development. The dynamic development of problems is reflected through quantitative indicators and appraisal systems not only from the perspective of academic research, but also governmental policy, so as to scientifically guide development, and measure and compare cities’ development levels. Although international scholars have proposed quantitative methods for urban resilience assessment, they are however insufficiently systematic and regionally adaptive for China’s current urban development needs. On the basis of comparative study on European and North American resilient city theories, therefore, this paper puts forwards a theoretical framework for resilient city systems consistent with China’s national conditions in light of economic development pressure, natural resource depletion, pollution, and other salient development crises in China. The key factors influencing urban resilience are taken into full consideration; expert appraisal is conducted based on the Delphi Method and the analytic hierarchy process (AHP) to design an extensible and updatable resilient city evaluation system which is sufficiently systematic, geographically adaptable, and sustainable for China’s current urban development needs. Finally, Changsha is taken as the main case for empirical study on comprehensive evaluation of similar cities in Central China to improve the indicator system

    Mangroves degradation: a local perspective on its awareness

    Get PDF
    Mangroves in Malaysia reside on the coastlines, and the largest areas of mangrove are in the Northern Sabah. Over the past decades, mangrove species have been reported to be disappearing from the globe. It is due to several natural processes that have been inserted to fill the needs of the increased population. These include illegal logging, agriculture activities and urbanisation. In this regards, awareness of the local residents about the problem of mangrove depletion is important to inhibit the problem to prolong further.Therefore, this research was conducted to determine the degree of awareness of local residents on the importance of mangroves in managing environmental quality. Consequently, a questionnaire survey was conducted on 103 respondents to examine their awareness on the subject of mangrove degradation.The respondents were selected randomly among local residents of Kuala Selangor district.It is found that only twenty percent of the total number of respondents are totallyaware of the issue and acted upon itÍŸ either taking part in the endeavours made by the government as well as those with the nongovernmental bodies or practicing mangroves replanting at their backyard

    Risk Assessment and Management of Petroleum Transportation Systems Operations

    Get PDF
    Petroleum Transportation Systems (PTSs) have a significant impact on the flow of crude oil within a Petroleum Supply Chain (PSC), due to the great demand on this natural product. Such systems are used for safe movement of crude and/or refined products from starting points (i.e. production sites or storage tanks), to their final destinations, via land or sea transportation. PTSs are vulnerable to several risks because they often operate in a dynamic environment. Due to this environment, many potential risks and uncertainties are involved. Not only having a direct effect on the product flow within PSC, PTSs accidents could also have severe consequences for the humans, businesses, and the environment. Therefore, safe operations of the key systems such as port, ship and pipeline, are vital for the success of PTSs. This research introduces an advanced approach to ensure safety of PTSs. This research proposes multiple network analysis, risk assessment, uncertainties treatment and decision making techniques for dealing with potential hazards and operational issues that are happening within the marine ports, ships, or pipeline transportation segments within one complete system. The main phases of the developed framework are formulated in six steps. In the first phase of the research, the hazards in PTSs operations that can lead to a crude oil spill are identified through conducting an extensive review of literature and experts’ knowledge. In the second phase, a Fuzzy Rule-Based Bayesian Reasoning (FRBBR) and Hugin software are applied in the new context of PTSs to assess and prioritise the local PTSs failures as one complete system. The third phase uses Analytic Hierarchy Process (AHP) in order to determine the weight of PTSs local factors. In the fourth phase, network analysis approach is used to measure the importance of petroleum ports, ships and pipelines systems globally within Petroleum Transportation Networks (PTNs). This approach can help decision makers to measure and detect the critical nodes (ports and transportation routes) within PTNs. The fifth phase uses an Evidential Reasoning (ER) approach and Intelligence Decision System (IDS) software, to assess hazards influencing on PTSs as one complete system. This research developed an advance risk-based framework applied ER approach due to its ability to combine the local/internal and global/external risk analysis results of the PTSs. To complete the cycle of this study, the best mitigating strategies are introduced and evaluated by incorporating VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) and AHP to rank the risk control options. The novelty of this framework provides decision makers with realistic and flexible results to ensure efficient and safe operations for PTSs

    Secure and Sustainable Energy System

    Get PDF
    This special issue aims to contribute to the climate actions which called for the need to address Greenhouse Gas (GHG) emissions, keeping global warming to well below 2°C through various means, including accelerating renewables, clean fuels, and clean technologies into the entire energy system. As long as fossil fuels (coal, gas and oil) are still used in the foreseeable future, it is vital to ensure that these fossil fuels are used cleanly through abated technologies. Financing the clean and energy transition technologies is vital to ensure the smooth transition towards net zero emission by 2050 or beyond. The lack of long‐term financing, the low rate of return, the existence of various risks, and the lack of capacity of market players are major challenges to developing sustainable energy systems.This special collected 17 high-quality empirical studies that assess the challenges for developing secure and sustainable energy systems and provide practical policy recommendations. The editors of this special issue wish to thank the Economic Research Institute for ASEAN and East Asia (ERIA) for funding several papers that were published in this special issue
    • 

    corecore