135 research outputs found

    Demand Forecasting at Low Aggregation Levels using Factored Conditional Restricted Boltzmann Machine.

    Get PDF
    The electrical demand forecasting problem can be regarded as a non-linear time series prediction problem depending on many complex factors since it is required at various aggregation levels and at high resolution. To solve this challenging problem, various time series and machine learning approaches has been proposed in the literature. As an evolution of neural network-based prediction methods, deep learning techniques are expected to increase the prediction accuracy by being stochastic and allowing bi-directional connections between neurons. In this paper, we investigate a newly developed deep learning model for time series prediction, namely Factored Conditional Restricted Boltzmann Machine (FCRBM), and extend it for demand forecasting. The assessment is made on the EcoGrid EU dataset, consisting of aggregated electric power consumption, price and meteorological data collected from 1900 customers. The households are equipped with local generation and smart appliances capable of responding to real-time pricing signals. The results show that for the energy prediction problem solved here, FCRBM outperforms the benchmark machine learning approach, i.e. Support Vector Machine

    A resilient and distributed near real-time traffic forecasting application for Fog computing environments

    Get PDF
    In this paper we propose an architecture for a city-wide traffic modeling and prediction service based on the Fog Computing paradigm. The work assumes an scenario in which a number of distributed antennas receive data generated by vehicles across the city. In the Fog nodes data is collected, processed in local and intermediate nodes, and finally forwarded to a central Cloud location for further analysis. We propose a combination of a data distribution algorithm, resilient to back-haul connectivity issues, and a traffic modeling approach based on deep learning techniques to provide distributed traffic forecasting capabilities. In our experiments, we leverage real traffic logs from one week of Floating Car Data (FCD) generated in the city of Barcelona by a road-assistance service fleet comprising thousands of vehicles. FCD was processed across several simulated conditions, ranging from scenarios in which no connectivity failures occurred in the Fog nodes, to situations with long and frequent connectivity outage periods. For each scenario, the resilience and accuracy of both the data distribution algorithm, and the learning methods were analyzed. Results show that the data distribution process running in the Fog nodes is resilient to back-haul connectivity issues and is able to deliver data to the Cloud location even in presence of severe connectivity problems. Additionally, the proposed traffic modeling and forecasting method exhibits better behavior when run distributed in the Fog instead of centralized in the Cloud, especially when connectivity issues occur that force data to be delivered out of order to the Cloud.This project is partially supported by the European Research Council (ERC), Spain under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 639595). It is also partially supported by the Ministry of Economy of Spain under contract TIN2015-65316-P and Generalitat de Catalunya, Spain under contract 2014SGR1051, by the ICREA Academia program, and by the BSC-CNS Severo Ochoa program (SEV-2015-0493). The authors gratefully acknowledge the Reial Automvil Club de Catalunya (RACC) for the dataset of Floating Car Data provided.Peer ReviewedPostprint (published version

    Orchestration of distributed ingestion and processing of IoT data for fog platforms

    Get PDF
    In recent years there has been an extraordinary growth of the Internet of Things (IoT) and its protocols. The increasing diffusion of electronic devices with identification, computing and communication capabilities is laying ground for the emergence of a highly distributed service and networking environment. The above mentioned situation implies that there is an increasing demand for advanced IoT data management and processing platforms. Such platforms require support for multiple protocols at the edge for extended connectivity with the objects, but also need to exhibit uniform internal data organization and advanced data processing capabilities to fulfill the demands of the application and services that consume IoT data. One of the initial approaches to address this demand is the integration between IoT and the Cloud computing paradigm. There are many benefits of integrating IoT with Cloud computing. The IoT generates massive amounts of data, and Cloud computing provides a pathway for that data to travel to its destination. But today’s Cloud computing models do not quite fit for the volume, variety, and velocity of data that the IoT generates. Among the new technologies emerging around the Internet of Things to provide a new whole scenario, the Fog Computing paradigm has become the most relevant. Fog computing was introduced a few years ago in response to challenges posed by many IoT applications, including requirements such as very low latency, real-time operation, large geo-distribution, and mobility. Also this low latency, geo-distributed and mobility environments are covered by the network architecture MEC (Mobile Edge Computing) that provides an IT service environment and Cloud-computing capabilities at the edge of the mobile network, within the Radio Access Network (RAN) and in close proximity to mobile subscribers. Fog computing addresses use cases with requirements far beyond Cloud-only solution capabilities. The interplay between Cloud and Fog computing is crucial for the evolution of the so-called IoT, but the reach and specification of such interplay is an open problem. This thesis aims to find the right techniques and design decisions to build a scalable distributed system for the IoT under the Fog Computing paradigm to ingest and process data. The final goal is to explore the trade-offs and challenges in the design of a solution from Edge to Cloud to address opportunities that current and future technologies will bring in an integrated way. This thesis describes an architectural approach that addresses some of the technical challenges behind the convergence between IoT, Cloud and Fog with special focus on bridging the gap between Cloud and Fog. To that end, new models and techniques are introduced in order to explore solutions for IoT environments. This thesis contributes to the architectural proposals for IoT ingestion and data processing by 1) proposing the characterization of a platform for hosting IoT workloads in the Cloud providing multi-tenant data stream processing capabilities, the interfaces over an advanced data-centric technology, including the building of a state-of-the-art infrastructure to evaluate the performance and to validate the proposed solution. 2) studying an architectural approach following the Fog paradigm that addresses some of the technical challenges found in the first contribution. The idea is to study an extension of the model that addresses some of the central challenges behind the converge of Fog and IoT. 3) Design a distributed and scalable platform to perform IoT operations in a moving data environment. The idea after study data processing in Cloud, and after study the convenience of the Fog paradigm to solve the IoT close to the Edge challenges, is to define the protocols, the interfaces and the data management to solve the ingestion and processing of data in a distributed and orchestrated manner for the Fog Computing paradigm for IoT in a moving data environment.En els últims anys hi ha hagut un gran creixement del Internet of Things (IoT) i els seus protocols. La creixent difusió de dispositius electrònics amb capacitats d'identificació, computació i comunicació esta establint les bases de l’aparició de serveis altament distribuïts i del seu entorn de xarxa. L’esmentada situació implica que hi ha una creixent demanda de plataformes de processament i gestió avançada de dades per IoT. Aquestes plataformes requereixen suport per a múltiples protocols al Edge per connectivitat amb el objectes, però també necessiten d’una organització de dades interna i capacitats avançades de processament de dades per satisfer les demandes de les aplicacions i els serveis que consumeixen dades IoT. Una de les aproximacions inicials per abordar aquesta demanda és la integració entre IoT i el paradigma del Cloud computing. Hi ha molts avantatges d'integrar IoT amb el Cloud. IoT genera quantitats massives de dades i el Cloud proporciona una via perquè aquestes dades viatgin a la seva destinació. Però els models actuals del Cloud no s'ajusten del tot al volum, varietat i velocitat de les dades que genera l'IoT. Entre les noves tecnologies que sorgeixen al voltant del IoT per proporcionar un escenari nou, el paradigma del Fog Computing s'ha convertit en la més rellevant. Fog Computing es va introduir fa uns anys com a resposta als desafiaments que plantegen moltes aplicacions IoT, incloent requisits com baixa latència, operacions en temps real, distribució geogràfica extensa i mobilitat. També aquest entorn està cobert per l'arquitectura de xarxa MEC (Mobile Edge Computing) que proporciona serveis de TI i capacitats Cloud al edge per la xarxa mòbil dins la Radio Access Network (RAN) i a prop dels subscriptors mòbils. El Fog aborda casos d?us amb requisits que van més enllà de les capacitats de solucions només Cloud. La interacció entre Cloud i Fog és crucial per a l'evolució de l'anomenat IoT, però l'abast i especificació d'aquesta interacció és un problema obert. Aquesta tesi té com objectiu trobar les decisions de disseny i les tècniques adequades per construir un sistema distribuït escalable per IoT sota el paradigma del Fog Computing per a ingerir i processar dades. L'objectiu final és explorar els avantatges/desavantatges i els desafiaments en el disseny d'una solució des del Edge al Cloud per abordar les oportunitats que les tecnologies actuals i futures portaran d'una manera integrada. Aquesta tesi descriu un enfocament arquitectònic que aborda alguns dels reptes tècnics que hi ha darrere de la convergència entre IoT, Cloud i Fog amb especial atenció a reduir la bretxa entre el Cloud i el Fog. Amb aquesta finalitat, s'introdueixen nous models i tècniques per explorar solucions per entorns IoT. Aquesta tesi contribueix a les propostes arquitectòniques per a la ingesta i el processament de dades IoT mitjançant 1) proposant la caracterització d'una plataforma per a l'allotjament de workloads IoT en el Cloud que proporcioni capacitats de processament de flux de dades multi-tenant, les interfícies a través d'una tecnologia centrada en dades incloent la construcció d'una infraestructura avançada per avaluar el rendiment i validar la solució proposada. 2) estudiar un enfocament arquitectònic seguint el paradigma Fog que aborda alguns dels reptes tècnics que es troben en la primera contribució. La idea és estudiar una extensió del model que abordi alguns dels reptes centrals que hi ha darrere de la convergència de Fog i IoT. 3) Dissenyar una plataforma distribuïda i escalable per a realitzar operacions IoT en un entorn de dades en moviment. La idea després d'estudiar el processament de dades a Cloud, i després d'estudiar la conveniència del paradigma Fog per resoldre el IoT prop dels desafiaments Edge, és definir els protocols, les interfícies i la gestió de dades per resoldre la ingestió i processament de dades en un distribuït i orquestrat per al paradigma Fog Computing per a l'IoT en un entorn de dades en moviment

    Time of day effects of temperature and daylight on short term electricity load

    Full text link
    This paper proposes a model for short-term electricity load with differentiated temperature and daylight effects by time of day, which are determined by variations in intraday economic activity. The relationship between electricity load and economic activity implies that the electricity demand response to changes in exogenous variables like temperature is non-linear as well as non-homogeneous along the day. The proposed framework, a smooth transition regression model with double threshold (LSTR2), models the observed intraday patterns in load curves to explicitly capture the effect of the circadian rest-activity cycle on the distinct responses of electricity demand to temperature and daylight variations throughout the day. The model shows that the sensitivity of demand to low temperatures is significantly larger in the “active” compared to the “rest” state. If temperatures decrease from 10 °C to 0 °C, electricity demand in the “active” state increases by 960.5 MW h per 1 °C decrease, but by only 26.6 MW h per 1 °C decrease in the “rest” state. When temperatures are higher, in the “rest state” demand decreases by 602.9 MW h per 1 °C if temperature falls from 26 °C to 21 °C, while in the “active” state demand only decreases by 323.6 MW h per 1 °C variatio

    Distributed cloud-edge analytics and machine learning for transportation emissions estimation

    Get PDF
    (English) In recent years IoT and Smart Cities have become a popular paradigm of computing that is based on network-enabled devices connected providing different functionalities, from sensor measures to domotic actions. With this paradigm, it is possible to provide to the stakeholders near-realtime information of the field, e.g. the current pollution of the city. Along with the mentioned paradigms, Fog Computing enables computation near the sensors where the data is produced, i.e. Edge nodes. This paradigm provides low latency and fault tolerance given the possible independence of the sensor devices. Moreover, pushing this computation enables derived results in a near-realtime fashion. This ability to push the computation to where the data is produced can be beneficial in many situations, however it also requires to include in the Edge the data preparation processes that ensure the fitness for use of the data as the incoming data can be erroneous. Given this situation, Machine Learning can be useful to correct data and also to produce predictions of the future values. Even though there have been studies regarding on the uses of data at the Edge, to our knowledge there is no evaluation of the different modeling situations and the viability of the approach. Therefore, this thesis aims to evaluate the possibility of building a distributed system that ensures the fitness for use of the incoming data through Machine Learning enabled Data Preparation, estimates the emissions and predicts the future status of the city in a near-realtime fashion. We evaluate the viability through three contributions. The first contribution focuses on forecasting in a distributed scenario with road traffic dataset for evaluation. It provides a robust solution to build a central model. This approach is based on Federated Learning, which allows training models at the Edge nodes and then merging them centrally. This way the models in the Edge can be independent but also can be synchronized. The results show the trade-off between accuracy versions training time and a comparison between low-powered devices versus server-class machines. These analyses show that it is viable to use Machine Learning with this paradigm. The second contribution focuses on a particular use case of ship emission estimation. To estimate exhaust emissions data must be correct, which is not always the case. This contribution explores the different techniques available to correct ship registry data and proposes the usage of simple Machine Learning techniques to do imputation of missing or erroneous values. This contribution analyzes the different variables and their relationship to provide the practitioners with guidelines for correction and data treatment. The results show that with classical Machine Learning it is possible to improve the state-of-the-art results. Moreover, as these algorithms are simple enough, they can be used in an Edge device if required. The third contribution focuses on generating new variables from the ones available with a ship trace dataset obtained from the Automatic Identification System (AIS). We use a pipeline of two different methods, a Neural Networks and a clustering algorithm, to group movements into movement patterns or \emph{behaviors}. We test the predicting power of these behaviors to predict ship type, main engine power, and navigational status. The prediction of the main engine power is compared against the standard technique used in ship emission estimation when the ship registry is missing. Our approach was able to detect 45\% of the otherwise undetected emissions if the baseline method was to be used. As ship navigational status is prone to error, the behaviors found are proposed as an alternative variable based in robust data. These contributions build a framework that can distribute the learning processes and that resists network failures in low-powered devices.(Español) En los últimos años, IoT y las Smart Cities se han convertido en un paradigma popular de computación que se basa en dispositivos conectados a la red que proporcionan diferentes funcionalidades, desde medidas de sensores hasta acciones domóticas. Con este paradigma, es posible tener información en casi tiempo real, como por ejemplo la contaminación actual de la ciudad. Junto con los paradigmas mencionados, Fog Computing permite computar cerca de donde se producen los datos, es decir, los nodos Edge. Este paradigma proporciona baja latencia y tolerancia a fallos dada la posible independencia de los dispositivos sensores. Esta posibilidad puede ser beneficiosa en muchas situaciones, sin embargo, requiere incluir en el Edge los procesos de preparación de datos que aseguran la idoneidad para su uso, ya que los datos entrantes pueden ser erróneos. Ante esta situación, el Machine Learning es útil para corregir datos y también para producir predicciones de los valores futuros. A pesar de que se han realizado estudios sobre los usos de los datos en el Edge, hasta donde sabemos, no hay una evaluación de las diferentes situaciones de modelado y la viabilidad del enfoque. Por lo tanto, esta tesis tiene como objetivo evaluar la posibilidad de construir un sistema distribuido que garantice que los datos sean correctos a través de su preparación con Machine Learning. También el sistema deberá estimar las emisiones y predecir el estado futuro de la ciudad de una manera casi en tiempo real. La viabilidad se evalúa a través a través de tres contribuciones. La primera contribución se centra en escenario distribuido con un conjunto de datos de tráfico vial que proporciona una solución robusta para construir un modelo central. Este enfoque se basa en Federated Learning, que permite entrenar modelos en los nodos Edge y luego fusionarlos de forma centralizada. De esta manera, los modelos en el Edge pueden ser independientes, pero también se pueden sincronizar. Los resultados muestran la comparación de la precisión con un modelo central y uno distribuido y una comparación con dispositivos de bajo consumos contra servidores. Estos análisis muestran que es viable utilizar el Machine Learning en este paradigma. La segunda contribución se centra en un caso de uso particular de estimación de las emisiones de barcos. Para estimar las emisiones, los datos deben ser correctos, cosa que no siempre pasa. Esta contribución explora las diferentes técnicas disponibles para corregir los datos del registro de barcos y propone el uso de técnicas simples de Machine Learning para hacer imputación de valores faltantes o erróneos. Esta contribución analiza las diferentes variables y su relación para proporcionar a los profesionales pautas para la corrección y el tratamiento de datos. Los resultados muestran que con el Machine Learning clásico es posible mejorar los resultados frente a métodos del estado del arte. Además, como estos algoritmos son lo suficientemente simples como para poder utilizarse en dispositivos Edge. La tercera contribución se centra en generar nuevas variables a partir de las disponibles con un conjunto de datos de trazabilidad de barcos obtenido del Sistema AIS. Esto se hace utilizando en conjunto una red neuronal y un algoritmo de agrupación para agrupar los movimientos en patrones de movimiento o comportamientos. Se evalúa su funcionamiento para predecir el tipo de barco, la potencia del motor principal y el estado de navegación. Con esta predicción, nuestro sistema es capaz de detectar el 45% de las emisiones que no se detectan con métodos standard. Como el estado de navegación del barco es propenso a errores, los comportamientos encontrados se proponen como una variable alternativa basada en datos robustos. Estas contribuciones constituyen un marco para distribuir los procesos de aprendizaje y que resiste errores en la red con dispositivos de bajo consumo.Arquitectura de computador

    Customer active power consumption prediction for the next day based on historical profile

    Get PDF
    Energy consumption prediction application is one of the most important fieldsthat is artificially controlled with Artificial Intelligence technologies to maintainaccuracy for electricity market costs reduction. This work presents a way to buildand apply a model to each costumer in residential buildings. This model is built by using Long Short Term Memory (LSTM) networks to address a demonstration of time-series prediction problem and Deep Learning to take into consideration the historical consumption of customers and hourly load profiles in order to predict future consumption. Using this model, the most probable sequence of a certain industrial customer’s consumption levels for a coming day is predicted. In the case of residential customers, determining the particular period of the prediction in terms of either a year or a month would be helpful and more accurate due to changes in consumption according to the changes in temperature and weather conditions in general. Both of them are used together in this research work to make a wide or narrow prediction window.A test data set for a set of customers is used. Consumption readings for anycustomer in the test data set applying LSTM model are varying between minimum and maximum values of active power consumption. These values are always alternating during the day according to customer consumption behavior. This consumption variation leads to leveling all readings to be determined in a finite set and deterministic values. These levels could be then used in building the prediction model. Levels of consumption’s are modeling states in the transition matrix. Twenty five readings are recorded per day on each hour and cover leap years extra ones. Emission matrix is built using twenty five values numbered from one to twenty five and represent the observations. Calculating probabilities of being in each level (node) is also covered. Logistic Regression Algorithm is used to determine the most probable nodes for the next 25 hours in case of residential or industrial customers.Index Terms—Smart Grids, Load Forecasting, Consumption Prediction, Long Short Term Memory (LSTM), Logistic Regression Algorithm, Load Profile, Electrical Consumption.</p

    AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives

    Get PDF
    In theory, building automation and management systems (BAMSs) can provide all the components and functionalities required for analyzing and operating buildings. However, in reality, these systems can only ensure the control of heating ventilation and air conditioning system systems. Therefore, many other tasks are left to the operator, e.g. evaluating buildings’ performance, detecting abnormal energy consumption, identifying the changes needed to improve efficiency, ensuring the security and privacy of end-users, etc. To that end, there has been a movement for developing artificial intelligence (AI) big data analytic tools as they offer various new and tailor-made solutions that are incredibly appropriate for practical buildings’ management. Typically, they can help the operator in (i) analyzing the tons of connected equipment data; and; (ii) making intelligent, efficient, and on-time decisions to improve the buildings’ performance. This paper presents a comprehensive systematic survey on using AI-big data analytics in BAMSs. It covers various AI-based tasks, e.g. load forecasting, water management, indoor environmental quality monitoring, occupancy detection, etc. The first part of this paper adopts a well-designed taxonomy to overview existing frameworks. A comprehensive review is conducted about different aspects, including the learning process, building environment, computing platforms, and application scenario. Moving on, a critical discussion is performed to identify current challenges. The second part aims at providing the reader with insights into the real-world application of AI-big data analytics. Thus, three case studies that demonstrate the use of AI-big data analytics in BAMSs are presented, focusing on energy anomaly detection in residential and office buildings and energy and performance optimization in sports facilities. Lastly, future directions and valuable recommendations are identified to improve the performance and reliability of BAMSs in intelligent buildings
    corecore