1,690 research outputs found

    Delivering Live Multimedia Streams to Mobile Hosts in a Wireless Internet with Multiple Content Aggregators

    Get PDF
    We consider the distribution of channels of live multimedia content (e.g., radio or TV broadcasts) via multiple content aggregators. In our work, an aggregator receives channels from content sources and redistributes them to a potentially large number of mobile hosts. Each aggregator can offer a channel in various configurations to cater for different wireless links, mobile hosts, and user preferences. As a result, a mobile host can generally choose from different configurations of the same channel offered by multiple alternative aggregators, which may be available through different interfaces (e.g., in a hotspot). A mobile host may need to handoff to another aggregator once it receives a channel. To prevent service disruption, a mobile host may for instance need to handoff to another aggregator when it leaves the subnets that make up its current aggregator�s service area (e.g., a hotspot or a cellular network).\ud In this paper, we present the design of a system that enables (multi-homed) mobile hosts to seamlessly handoff from one aggregator to another so that they can continue to receive a channel wherever they go. We concentrate on handoffs between aggregators as a result of a mobile host crossing a subnet boundary. As part of the system, we discuss a lightweight application-level protocol that enables mobile hosts to select the aggregator that provides the �best� configuration of a channel. The protocol comes into play when a mobile host begins to receive a channel and when it crosses a subnet boundary while receiving the channel. We show how our protocol can be implemented using the standard IETF session control and description protocols SIP and SDP. The implementation combines SIP and SDP�s offer-answer model in a novel way

    Mediator-assisted multi-source routing in information-centric networks

    Get PDF
    Among the new communication paradigms recently proposed, information-centric networking (ICN) is able to natively support content awareness at the network layer shifting the focus from hosts (as in traditional IP networks) to information objects. In this paper, we exploit the intrinsic content-awareness ICN features to design a novel multi-source routing mechanism. It involves a new network entity, the ICN mediator, responsible for locating and delivering the requested information objects that are chunked and stored at different locations. Our approach imposes very limited signalling overhead, especially for large chunk size (MBytes). Simulations show significant latency reduction compared to traditional routing approaches

    Design and investigation of scalable multicast recursive protocols for wired and wireless ad hoc networks

    Get PDF
    The ever-increasing demand on content distribution and media streaming over the Internet has created the need for efficient methods of delivering information. One of the most promising approaches is based on multicasting. However, multicast solutions have to cope with several constraints as well as being able to perform in different environments such as wired, wireless, and ad hoc environments. Additionally, the scale and size of the Internet introduces another dimension of difficulty. Providing scalable multicast for mobile hosts in wireless environment and in mobile ad hoc networks (MANETs) is a challenging problem. In the past few years, several protocols have been proposed to efficient multicast solutions over the Internet, but these protocols did not give efficient solution for the scalability issue. In this thesis, scalable multicast protocols for wired, wireless and wireless ad hoc networks are proposed and evaluated. These protocols share the idea of building up a multicast tree gradually and recursively as join/leave of the multicast group members using a dynamic branching node-based tree (DBT) concept. The DBT uses a pair of branching node messages (BNMs). These messages traverse between a set of dynamically assigned branching node routers (BNRs) to build the multicast tree. In the proposed protocols only the branching node routers (BNRs) carry the state information about their next BNRs rather than the multicast group members, which gives a fixed size of control packet header size as the multicast group size increases, i.e. a good solution to the problem of scalability. Also the process of join/leave of multicast group members is carried out locally which gives low join/leave latency. The proposed protocols include: Scalable Recursive Multicast protocol (SReM) which is proposed using the DBT concepts mentioned above, Mobile Scalable Recursive Multicast protocol (MoSReM) which is an extension for SReM by taking into consideration the mobility feature in the end hosts and performing an efficient roaming process, and finally, a Scalable Ad hoc Recursive Multicast protocol (SARM) to achieve the mobility feature for all nodes and performing an efficient solution for link recovery because of node movement. By cost analysis and an extensive simulation, the proposed protocols show many positive features like fixed size control messages, being scalable, low end to end delay, high packet rate delivery and low normalized routing overhead. The thesis concludes by discussing the contributions of the proposed protocols on scalable multicast in the Internet society

    A reliable totally-ordered group multicast protocol for mobile Internet

    Get PDF
    Version of RecordPublishe

    Multicast-Based Mobile Ipv6 Join/Leave Mechanism Software

    Get PDF
    Increasing demand for mobility in the Internet has created the need for a routing protocol that allows a host to roam in the network. Mobile IP is a solution that enables an IP host to leave its home link while transparently maintaining all of its present connections and remaining reachable to the rest of the Internet. The Internet Engineering Task Force (IETF) has standardized Mobile IPv4. Mobile IPv6 is a work in progress in the IETF, offering support for IPv6 mobile nodes. Although it is not yet standardized, every IPv6 node is required to implement Mobile IPv6, which means that mobility must be widely supported. IP-multicast provides efficient algorithms for multiple packet delivery. It also provides location-independent group addressing. The receiver-initiated approach for IP-multicast enables new receivers to join to a nearby branch of an already established multicast tree. Hence, IP-multicast provides a scalable infrastructure for efficient, location-independent, packet delivery.The recent advances in wireless communication technology and the growth of the Internet have paved the way for wireless networking and IP mobility. Unlike conventional wired networks, wireless networks possess different channel characteristics and mobility dynamics that render network design and analysis more cha1lenging. Performance during handoff where the mobile moves from one cell, or coverage area, to another is a significant factor in evaluating wireless networks

    Mobile IP: state of the art report

    Get PDF
    Due to roaming, a mobile device may change its network attachment each time it moves to a new link. This might cause a disruption for the Internet data packets that have to reach the mobile node. Mobile IP is a protocol, developed by the Mobile IP Internet Engineering Task Force (IETF) working group, that is able to inform the network about this change in network attachment such that the Internet data packets will be delivered in a seamless way to the new point of attachment. This document presents current developments and research activities in the Mobile IP area

    Walkabout : an asynchronous messaging architecture for mobile devices

    Get PDF
    Modern mobile devices are prolific producers and consumers of digital data, and wireless networking capabilities enable them to transfer their data over the Internet while moving. Applications running on these devices may perform transfers to upload data for backup or distribution, or to download new content on demand. Unfortunately, the limited connectivity that mobile devices experience can make these transfers slow and impractical as the amount of data increases. This thesis argues that asynchronous messaging supported by local proxies can improve the transfer capabilities of mobile devices, making it practical for them to participate in large Internet transfers. The design of the Walkabout architecture follows this approach: proxies form store-and-forward overlay networks to deliver messages asynchronously across the Internet on behalf of devices. A mobile device uploads a message to a local proxy at rapid speed, and the overlay delivers it to one or more destination devices, caching the message until each one is able to retrieve it from a local proxy. A device is able to partially upload or download a message whenever it has network connectivity, and can resume this transfer at any proxy if interrupted through disconnection. Simulation results show that Walkabout provides better throughput for mobile devices than is possible under existing methods, for a range of movement patterns. Upload and end-to-end to transfer speeds are always high when the device sending the message is mobile. In the basic Walkabout model, a message sent to a mobile device that is repeatedly moving between a small selection of connection points experiences high download and end-to-end transfer speeds, but these speeds fall as the number of connection points grows. Pre-emptive message delivery extensions improve this situation, making fast end-to-end transfers and device downloads possible under any pattern of movement. This thesis describes the design and evaluation of Walkabout, with both practical implementation and extensive simulation under real-world scenarios
    corecore