1,720 research outputs found

    Pixel and Voxel Representations of Graphs

    Full text link
    We study contact representations for graphs, which we call pixel representations in 2D and voxel representations in 3D. Our representations are based on the unit square grid whose cells we call pixels in 2D and voxels in 3D. Two pixels are adjacent if they share an edge, two voxels if they share a face. We call a connected set of pixels or voxels a blob. Given a graph, we represent its vertices by disjoint blobs such that two blobs contain adjacent pixels or voxels if and only if the corresponding vertices are adjacent. We are interested in the size of a representation, which is the number of pixels or voxels it consists of. We first show that finding minimum-size representations is NP-complete. Then, we bound representation sizes needed for certain graph classes. In 2D, we show that, for kk-outerplanar graphs with nn vertices, Θ(kn)\Theta(kn) pixels are always sufficient and sometimes necessary. In particular, outerplanar graphs can be represented with a linear number of pixels, whereas general planar graphs sometimes need a quadratic number. In 3D, Θ(n2)\Theta(n^2) voxels are always sufficient and sometimes necessary for any nn-vertex graph. We improve this bound to Θ(nτ)\Theta(n\cdot \tau) for graphs of treewidth τ\tau and to O((g+1)2nlog2n)O((g+1)^2n\log^2n) for graphs of genus gg. In particular, planar graphs admit representations with O(nlog2n)O(n\log^2n) voxels

    EPG-representations with small grid-size

    Full text link
    In an EPG-representation of a graph GG each vertex is represented by a path in the rectangular grid, and (v,w)(v,w) is an edge in GG if and only if the paths representing vv an ww share a grid-edge. Requiring paths representing edges to be x-monotone or, even stronger, both x- and y-monotone gives rise to three natural variants of EPG-representations, one where edges have no monotonicity requirements and two with the aforementioned monotonicity requirements. The focus of this paper is understanding how small a grid can be achieved for such EPG-representations with respect to various graph parameters. We show that there are mm-edge graphs that require a grid of area Ω(m)\Omega(m) in any variant of EPG-representations. Similarly there are pathwidth-kk graphs that require height Ω(k)\Omega(k) and area Ω(kn)\Omega(kn) in any variant of EPG-representations. We prove a matching upper bound of O(kn)O(kn) area for all pathwidth-kk graphs in the strongest model, the one where edges are required to be both x- and y-monotone. Thus in this strongest model, the result implies, for example, O(n)O(n), O(nlogn)O(n \log n) and O(n3/2)O(n^{3/2}) area bounds for bounded pathwidth graphs, bounded treewidth graphs and all classes of graphs that exclude a fixed minor, respectively. For the model with no restrictions on the monotonicity of the edges, stronger results can be achieved for some graph classes, for example an O(n)O(n) area bound for bounded treewidth graphs and O(nlog2n)O(n \log^2 n) bound for graphs of bounded genus.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017
    corecore