21,633 research outputs found
Passive and active seismic isolation for gravitational radiation detectors and other instruments
Some new passive and active methods for reducing the effects of seismic disturbances on suspended masses are described, with special reference to gravitational radiation detectors in which differential horizontal motions of two or more suspended test masses are monitored. In these methods it is important to be able to determine horizontal seismic accelerations independent of tilts of the ground. Measurement of changes in inclination of the suspension wire of a test mass, relative to a direction defined by a reference arm of long period of oscillation, makes it possible to carry this out over the frequency range of interest for earth-based gravitational radiation detectors. The signal obtained can then be used to compensate for the effects of seismic disturbances on the test mass if necessary. Alternatively the signal corresponding to horizontal acceleration can be used to move the point from which the test mass is suspended in such a way as to reduce the effect of the seismic disturbance and also damp pendulum motions of the suspended test mass. Experimental work with an active anti-seismic system of this type is described
Evaluation of selected strapdown inertial instruments and pulse torque loops, volume 1
Design, operational and performance variations between ternary, binary and forced-binary pulse torque loops are presented. A fill-in binary loop which combines the constant power advantage of binary with the low sampling error of ternary is also discussed. The effects of different output-axis supports on the performance of a single-degree-of-freedom, floated gyroscope under a strapdown environment are illustrated. Three types of output-axis supports are discussed: pivot-dithered jewel, ball bearing and electromagnetic. A test evaluation on a Kearfott 2544 single-degree-of-freedom, strapdown gyroscope operating with a pulse torque loop, under constant rates and angular oscillatory inputs is described and the results presented. Contributions of the gyroscope's torque generator and the torque-to-balance electronics on scale factor variation with rate are illustrated for a SDF 18 IRIG Mod-B strapdown gyroscope operating with various pulse rebalance loops. Also discussed are methods of reducing this scale factor variation with rate by adjusting the tuning network which shunts the torque coil. A simplified analysis illustrating the principles of operation of the Teledyne two-degree-of-freedom, elastically-supported, tuned gyroscope and the results of a static and constant rate test evaluation of that instrument are presented
A noise simulator for eLISA: migrating LISA pathfinder knowledge to the eLISA mission
We present a new technical simulator for the eLISA mission, based on state space modeling techniques and developed in MATLAB. This simulator computes the coordinate and velocity over time of each body involved in the constellation, i.e. the spacecraft and its test masses, taking into account the different disturbances and actuations. This allows studying the contribution of instrumental noises and system imperfections on the residual acceleration applied on the TMs, the latter reflecting the performance of the achieved free-fall along the sensitive axis. A preliminary version of the results is presented
Feasibility of measuring the Shapiro time delay over meter-scale distances
The time delay of light as it passes by a massive object, first calculated by
Shapiro in 1964, is a hallmark of the curvature of space-time. To date, all
measurements of the Shapiro time delay have been made over solar-system
distance scales. We show that the new generation of kilometer-scale laser
interferometers being constructed as gravitational wave detectors, in
particular Advanced LIGO, will in principle be sensitive enough to measure
variations in the Shapiro time delay produced by a suitably designed rotating
object placed near the laser beam. We show that such an apparatus is feasible
(though not easy) to construct, present an example design, and calculate the
signal that would be detectable by Advanced LIGO. This offers the first
opportunity to measure space-time curvature effects on a laboratory distance
scale.Comment: 13 pages, 6 figures; v3 has updated instrumental noise curves plus a
few text edits; resubmitted to Classical and Quantum Gravit
Aerospace medicine and biology: A continuing bibliography with indexes (supplement 299)
This bibliography lists 96 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1987
Flexible aircraft flying and ride qualities
A brief analytic exposition is presented to illustrate a central principle in flexible mode control, some of the pertinent pilot centered requirements are listed and discussed. The desired features of the control methodology are exposed and the methodology to be used is selected. The example Boeing supplied characteristics are discussed and approximated with a reduced order model and a simplified treatment of unsteady aerodynamics. The closed loop flight control system design follows, along with first level assessments of resulting handling and ride quality characteristics. Some of these do not meet the postulated requirements and remain problems to be solved possibly by further analysis or future simulation
An LQR controller design approach for a Large Gap Magnetic Suspension System (LGMSS)
Two control approaches for a Large Gap Magnetic Suspension System (LGMSS) are investigated and numerical results are presented. The approaches are based on Linear Quadratic Regulator (LQR) control theory and include a nonzero set point regulator with constant disturbance input and an integral feedback regulator. The LGMSS provides five degree of freedom control of a cylindrical suspended element which is composed of permanent magnet material. The magnetic actuators are air core electromagnets mounted in a planar way
- …
