2,049 research outputs found

    Optimization of bit interleaved coded modulation using genetic algorithms

    Get PDF
    Modern wireless communication systems must be optimized with respect to both bandwidth efficiency and energy efficiency. A common approach to achieve these goals is to use multi-level modulation such as quadrature-amplitude modulation (QAM) for bandwidth efficiency and an error-control code for energy efficiency. In benign additive white Gaussian noise (AWGN) channels, Ungerboeck proposed trellis-coded modulation (TCM), which combines modulation and coding into a joint operation. However, in fading channels, it is important to maximize diversity. As shown by Zehavi, diversity is maximized by performing coding and modulation separately and interleaving bits that are passed from the encoder to the modulator. Such systems are termed BICM for bit-interleaved coded modulation. Later, Li and Ritcey proposed a method for improving the performance of BICM systems by iteratively passing information between the demodulator and decoder. Such systems are termed BICM-ID , for BICM with Iterative Decoding. The bit error rate (BER) curve of a typical BICM-ID system is characterized by a steeply sloping waterfall region followed by an error floor with a gradual slope.;This thesis is focused on optimizing BICM-ID systems in the error floor region. The problem of minimizing the error bound is formulated as an instance of the Quadratic Assignment Problem (QAP) and solved using a genetic algorithm. First, an optimization is performed by fixing the modulation and varying the bit-to-symbol mapping. This approach provides the lowest possible error floor for a BICM-ID system using standard QAM and phase-shift keying (PSK) modulations. Next, the optimization is performed by varying not only the bit-to-symbol mapping, but also the location of the signal points within the two-dimensional constellation. This provides an error floor that is lower than that achieved with the best QAM and PSK systems, although at the cost of a delayed waterfall region

    Prediction of performance of the DVB-SH system relying on mutual information

    Get PDF
    DVB-SH (Digital Video Broadcasting-Satellite Handled) is a broadcasting standard dedicated to hybrid broadcasting systems combining a satellite and a terrestrial part. On the satellite part, dedicated interleaving and time slicing mechanisms are proposed to mitigate the effects of Land Mobile Satellite (LMS) channel, based on a convolutional interleaver. Depending on the parameters of this interleaver, this mechanism enables to split in time a codeword on duration from 100 ms to about 30s. This mechanism signi?cantly improves the error recovery performance of the code but in literature, exact evaluation at system level of this improvement is missing. The objective of this paper is to propose a prediction method compatible with fast simulations, to quantitatively evaluate the system performance in terms of Packet Error Rate (PER). The main dif?culty is to evaluate the decoding probability of a codeword submitted to several levels of attenuation. The method we propose consists in using as metric the Mutual Information (MI) between coded bit at the emitter side and the received symbol. It is shown that, by averaging the MI over the codeword and by using the decoding performance function g such that PER=g(MI)determined on the Gaussian channel, we can signi?cantly improve the precision of the prediction compared to the two other methods based on SNR and Bit Error Rate (BER). We evaluated these methods on three arti?cial channels where each codeword is transmitted with three or four different levels of attenuations. The prediction error of the SNR-based (resp. the input BER-based) method varies from 0.5 to 1.7 dB (resp. from 0.7 to 1.2 dB) instead of the MI-based method achieves a precision in the order of 0.1 dB in the three cases. We then evaluate this method on real LMS channels with various DVB-SH interleavers and show that the instantaneous PER can also be predicted with high accuracy

    Low Complexity Decoding for Higher Order Punctured Trellis-Coded Modulation Over Intersymbol Interference Channels

    Full text link
    Trellis-coded modulation (TCM) is a power and bandwidth efficient digital transmission scheme which offers very low structural delay of the data stream. Classical TCM uses a signal constellation of twice the cardinality compared to an uncoded transmission with one bit of redundancy per PAM symbol, i.e., application of codes with rates n−1n\frac{n-1}{n} when 2n2^{n} denotes the cardinality of the signal constellation. Recently published work allows rate adjustment for TCM by means of puncturing the convolutional code (CC) on which a TCM scheme is based on. In this paper it is shown how punctured TCM-signals transmitted over intersymbol interference (ISI) channels can favorably be decoded. Significant complexity reductions at only minor performance loss can be achieved by means of reduced state sequence estimation.Comment: 4 pages, 5 figures, 3 algorithms, accepted and published at 6th International Symposium on Communications, Control, and Signal Processing (ISCCSP 2014

    Low Complexity Decoding for Punctured Trellis-Coded Modulation Over Intersymbol Interference Channels

    Full text link
    Classical trellis-coded modulation (TCM) as introduced by Ungerboeck in 1976/1983 uses a signal constellation of twice the cardinality compared to an uncoded transmission with one bit of redundancy per PAM symbol, i.e., application of codes with rates n−1n\frac{n-1}{n} when 2n2^{n} denotes the cardinality of the signal constellation. The original approach therefore only comprises integer transmission rates, i.e., R={2, 3, 4 
}R=\left\{ 2,\,3,\,4\,\ldots \right\}, additionally, when transmitting over an intersymbol interference (ISI) channel an optimum decoding scheme would perform equalization and decoding of the channel code jointly. In this paper, we allow rate adjustment for TCM by means of puncturing the convolutional code (CC) on which a TCM scheme is based on. In this case a nontrivial mapping of the output symbols of the CC to signal points results in a time-variant trellis. We propose an efficient technique to integrate an ISI-channel into this trellis and show that the computational complexity can be significantly reduced by means of a reduced state sequence estimation (RSSE) algorithm for time-variant trellises.Comment: 4 pages, 7 pictured, accepted for 2014 International Zurich Seminar on Communication

    Performance Prediction of Nonbinary Forward Error Correction in Optical Transmission Experiments

    Get PDF
    In this paper, we compare different metrics to predict the error rate of optical systems based on nonbinary forward error correction (FEC). It is shown that the correct metric to predict the performance of coded modulation based on nonbinary FEC is the mutual information. The accuracy of the prediction is verified in a detailed example with multiple constellation formats, FEC overheads in both simulations and optical transmission experiments over a recirculating loop. It is shown that the employed FEC codes must be universal if performance prediction based on thresholds is used. A tutorial introduction into the computation of the threshold from optical transmission measurements is also given.Comment: submitted to IEEE/OSA Journal of Lightwave Technolog

    Iterative Detection of Diagonal Block Space Time Trellis Codes, TCM and Reversible Variable Length Codes for Transmission over Rayleigh Fading Channels

    No full text
    Iterative detection of Diagonal Block Space Time Trellis Codes (DBSTTCs), Trellis Coded Modulation (TCM) and Reversible Variable Length Codes (RVLCs) is proposed. With the aid of efficient iterative decoding, the proposed scheme is capable of providing full transmit diversity and a near channel capacity performance. The performance of the proposed scheme was evaluated when communicating over uncorrelated Rayleigh fading channels. Explicitly, significant iteration gains were achieved by the proposed scheme, which was capable of performing within 2~dB from the channel capacity

    A software and hardware evaluation of revolutionary turbo MIMO OFDM schemes for 5 GHz WLANs

    Get PDF
    • 

    corecore