23,427 research outputs found

    Mean-Field-Type Games in Engineering

    Full text link
    A mean-field-type game is a game in which the instantaneous payoffs and/or the state dynamics functions involve not only the state and the action profile but also the joint distributions of state-action pairs. This article presents some engineering applications of mean-field-type games including road traffic networks, multi-level building evacuation, millimeter wave wireless communications, distributed power networks, virus spread over networks, virtual machine resource management in cloud networks, synchronization of oscillators, energy-efficient buildings, online meeting and mobile crowdsensing.Comment: 84 pages, 24 figures, 183 references. to appear in AIMS 201

    THE EQUIVALENCE OF EVOLUTIONARY GAMES AND DISTRIBUTED MONTE CARLO LEARNING

    Get PDF
    This paper presents a tight relationship between evolutionary game theory and distributed intelligence models. After reviewing some existing theories of replicator dynamics and distributed Monte Carlo learning, we make formulations and proofs of the equivalence between these two models. The relationship will be revealed not only from a theoretical viewpoint, but also by experimental simulations of the models by taking a simple symmetric zero-sum game as an example. As a consequence, it will be verified that seemingly chaotic macro dynamics generated by distributed micro-decisions can be explained with theoretical models.Research Methods/ Statistical Methods,

    A benign juvenile environment reduces the strength of antagonistic pleiotropy and genetic variation in the rate of senescence

    Get PDF
    The environment can play an important role in the evolution of senescence because the optimal allocation between somatic maintenance and reproduction depends on external factors influencing life expectancy. The aims of this study were to experimentally test whether environmental conditions during early life can shape senescence schedules, and if so, to examine whether variation among individuals or genotypes with respect to the degree of ageing differs across environments. We tested life-history plasticity and quantified genetic effects on the pattern of senescence across different environments within a reaction norm framework by using an experiment on the three-spined stickleback (Gasterosteus aculeatus, Linnaeus) in which F1 families originating from a wild annual population experienced different temperature regimes. Male sticklebacks that had experienced a more benign environment earlier in life subsequently reduced their investment in carotenoid-based sexual signals early in the breeding season, and consequently senesced at a slower rate later in the season, compared to those that had developed under harsher conditions. This plasticity of ageing was genetically determined. Both antagonistic pleiotropy and genetic variation in the rate of senescence were evident only in the individuals raised in the harsher environment. The experimental demonstration of genotype-by-environment interactions influencing the rate of reproductive senescence provides interesting insights into the role of the environment in the evolution of life histories. The results suggest that benign conditions weaken the scope for senescence to evolve and that the dependence on the environment may maintain genetic variation under selection

    The naturalistic turn in economics: implications for the theory of finance

    Get PDF
    Economics is increasingly adopting the methodological standards and procedures of the natural sciences. The paper analyzes this 'naturalistic turn' from the philosophical perspective on naturalism, and I discuss the implications for the field of finance. The theory of finance is an interesting case in point for the methodological issues, as it manifests a paradigmatic tension between the pure theory of finance and Behavioral Finance. I distinguish between three kinds of naturalism: mark I, the reduction of behavior on psychoneural phenomena, mark II, the transfer of patterns of causal explanations from the natural sciences to the social sciences, mark III, the enrichment of the ontology from observer-independent to observer-relative facts. Building an integrated naturalistic paradigm from these three ingredients, I show that naturalism in economics will only be completed by a simultaneous linguistic turn, with language being analyzed from the naturalistic viewpoint. I relate this proposition with recent results of research into finance, especially connecting Behavioral Finance with the sociology of finance. --Naturalism,causation in economics,neuroeconomics,behavioral finance,social ontology,sociology of finance

    Naturalizing institutions: Evolutionary principles and application on the case of money

    Get PDF
    In recent extensions of the Darwinian paradigm into economics, the replicator-interactor duality looms large. I propose a strictly naturalistic approach to this duality in the context of the theory of institutions, which means that its use is seen as being always and necessarily dependent on identifying a physical realization. I introduce a general framework for the analysis of institutions, which synthesizes Searle's and Aoki's theories, especially with regard to the role of public representations (signs) in the coordination of actions, and the function of cognitive processes that underly rule-following as a behavioral disposition. This allows to conceive institutions as causal circuits that connect the population-level dynamics of interactions with cognitive phenomena on the individual level. Those cognitive phenomena ultimately root in neuronal structures. So, I draw on a critical restatement of the concept of the meme by Aunger to propose a new conceptualization of the replicator in the context of institutions, namely, the replicator is a causal conjunction between signs and neuronal structures which undergirds the dispositions that generate rule-following actions. Signs, in turn, are outcomes of population-level interactions. I apply this framework on the case of money, analyzing the emotions that go along with the use of money, and presenting a stylized account of the emergence of money in terms of the naturalized Searle-Aoki model. In this view, money is a neuronally anchored metaphor for emotions relating with social exchange and reciprocity. Money as a meme is physically realized in a replicator which is a causal conjunction of money artefacts and money emotions. --Generalized Darwinism,institutions,replicator/interactor,Searle,Aoki,naturalism,memes,emotions,money

    Paradoxes in Semi-Dynamic Evolutionary Power Control Game: When Intuition Fools You!

    Full text link
    corecore