14,427 research outputs found

    Efficient Transport Protocol for Networked Haptics Applications

    Get PDF
    The performance of haptic application is highly sensitive to communication delays and losses of data. It implies several constraints in developing networked haptic applications. This paper describes a new internet protocol called Efficient Transport Protocol (ETP), which aims at developing distributed interactive applications. TCP and UDP are transport protocols commonly used in any kind of networked communication, but they are not focused on real time application. This new protocol is focused on reducing roundtrip time (RTT) and inter packet gap (IPG). ETP is, therefore, optimized for interactive applications which are based on processes that are continuously exchanging data.ETP protocol is based on a state machine that decides the best strategies for optimizing RTT and IPG. Experiments have been carried out in order to compare this new protocol and UDP

    Cross-layer Congestion Control, Routing and Scheduling Design in Ad Hoc Wireless Networks

    Get PDF
    This paper considers jointly optimal design of crosslayer congestion control, routing and scheduling for ad hoc wireless networks. We first formulate the rate constraint and scheduling constraint using multicommodity flow variables, and formulate resource allocation in networks with fixed wireless channels (or single-rate wireless devices that can mask channel variations) as a utility maximization problem with these constraints. By dual decomposition, the resource allocation problem naturally decomposes into three subproblems: congestion control, routing and scheduling that interact through congestion price. The global convergence property of this algorithm is proved. We next extend the dual algorithm to handle networks with timevarying channels and adaptive multi-rate devices. The stability of the resulting system is established, and its performance is characterized with respect to an ideal reference system which has the best feasible rate region at link layer. We then generalize the aforementioned results to a general model of queueing network served by a set of interdependent parallel servers with time-varying service capabilities, which models many design problems in communication networks. We show that for a general convex optimization problem where a subset of variables lie in a polytope and the rest in a convex set, the dual-based algorithm remains stable and optimal when the constraint set is modulated by an irreducible finite-state Markov chain. This paper thus presents a step toward a systematic way to carry out cross-layer design in the framework of “layering as optimization decomposition” for time-varying channel models
    corecore