188 research outputs found

    Automatic Flight Control Systems

    Get PDF
    The history of flight control is inseparably linked to the history of aviation itself. Since the early days, the concept of automatic flight control systems has evolved from mechanical control systems to highly advanced automatic fly-by-wire flight control systems which can be found nowadays in military jets and civil airliners. Even today, many research efforts are made for the further development of these flight control systems in various aspects. Recent new developments in this field focus on a wealth of different aspects. This book focuses on a selection of key research areas, such as inertial navigation, control of unmanned aircraft and helicopters, trajectory control of an unmanned space re-entry vehicle, aeroservoelastic control, adaptive flight control, and fault tolerant flight control. This book consists of two major sections. The first section focuses on a literature review and some recent theoretical developments in flight control systems. The second section discusses some concepts of adaptive and fault-tolerant flight control systems. Each technique discussed in this book is illustrated by a relevant example

    D-SLATS: Distributed Simultaneous Localization and Time Synchronization

    Full text link
    Through the last decade, we have witnessed a surge of Internet of Things (IoT) devices, and with that a greater need to choreograph their actions across both time and space. Although these two problems, namely time synchronization and localization, share many aspects in common, they are traditionally treated separately or combined on centralized approaches that results in an ineffcient use of resources, or in solutions that are not scalable in terms of the number of IoT devices. Therefore, we propose D-SLATS, a framework comprised of three different and independent algorithms to jointly solve time synchronization and localization problems in a distributed fashion. The First two algorithms are based mainly on the distributed Extended Kalman Filter (EKF) whereas the third one uses optimization techniques. No fusion center is required, and the devices only communicate with their neighbors. The proposed methods are evaluated on custom Ultra-Wideband communication Testbed and a quadrotor, representing a network of both static and mobile nodes. Our algorithms achieve up to three microseconds time synchronization accuracy and 30 cm localization error

    Stochastic Real-time Optimal Control: A Pseudospectral Approach for Bearing-Only Trajectory Optimization

    Get PDF
    A method is presented to couple and solve the optimal control and the optimal estimation problems simultaneously, allowing systems with bearing-only sensors to maneuver to obtain observability for relative navigation without unnecessarily detracting from a primary mission. A fundamentally new approach to trajectory optimization and the dual control problem is developed, constraining polynomial approximations of the Fisher Information Matrix to provide an information gradient and allow prescription of the level of future estimation certainty required for mission accomplishment. Disturbances, modeling deficiencies, and corrupted measurements are addressed with recursive updating of the target estimate with an Unscented Kalman Filter and the optimal path with Radau pseudospectral collocation methods and sequential quadratic programming. The basic real-time optimal control (RTOC) structure is investigated, specifically addressing limitations of current techniques in this area that lose error integration. The resulting guidance method can be applied to any bearing-only system, such as submarines using passive sonar, anti-radiation missiles, or small UAVs seeking to land on power lines for energy harvesting. Methods and tools required for implementation are developed, including variable calculation timing and tip-tail blending for potential discontinuities. Validation is accomplished with simulation and flight test, autonomously landing a quadrotor helicopter on a wire

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Real-time implementation of some attitude estimation algorithms on a quadrotor UAV / by Siddhant Nayak.

    Get PDF
    The recent developments in research pertaining to the field of Unmanned Aerial Vehicles (UAVs) is motivated by its technical challenges as well as its practical implications in areas where human presence is inefficient, redundant or dangerous. The absence of human interference requires more robust and precise control techniques. However, most modern attitude control techniques require the knowledge of the current orientation of the body. There is no sensor available that explicitly measures the attitude of a rigid body and hence, for small scale UAVs. it must be estimated using inertial vector measurements from low-cost and low-weight Micro-Electro-Mechanical System (MEMS) sensors like gyroscopes, accelerometers and magnetometers. The predominant attitude representation formulations of a rigid body in three-dimensional space are recapitulated to elucidate the dynamical model of a quadrotor UAV. Low-cost MEMS are prone to significant noise effects from temperature change, vibrations, on-board magnetic fields generated by motors and currents. To improve the accuracy of the measurements sensor calibration techniques are explored. Primitive attitude estimation techniques like TRIAD, Davenports q-method, QUEST.FOAM, SVD method, etc. (which were aimed to be static optimization solutions to Wahbas Problem) were reviewed. These algorithms were extended to incorporate filtering techniques like Kahnan-type, to handle the measurement noise, and complementary filtering, where sensor measurements are fused to reconstruct the orientation of a rigid body. Tlie latest nonlinear observers are also discussed for implementation purposes. Practical implementation and performance comparison of various attitude estimation algorithms has been conducted on a small-scale quadrotor UAV, consisting of an inertial measurement unit (3-axis gyroscope, accelerometer and magnetometer), microcontroller, brushless motors, electronic speed controllers, on-board power supply and necessary frame constructs

    Adaptive Sampling with Mobile Sensor Networks

    Get PDF
    Mobile sensor networks have unique advantages compared with wireless sensor networks. The mobility enables mobile sensors to flexibly reconfigure themselves to meet sensing requirements. In this dissertation, an adaptive sampling method for mobile sensor networks is presented. Based on the consideration of sensing resource constraints, computing abilities, and onboard energy limitations, the adaptive sampling method follows a down sampling scheme, which could reduce the total number of measurements, and lower sampling cost. Compressive sensing is a recently developed down sampling method, using a small number of randomly distributed measurements for signal reconstruction. However, original signals cannot be reconstructed using condensed measurements, as addressed by Shannon Sampling Theory. Measurements have to be processed under a sparse domain, and convex optimization methods should be applied to reconstruct original signals. Restricted isometry property would guarantee signals can be recovered with little information loss. While compressive sensing could effectively lower sampling cost, signal reconstruction is still a great research challenge. Compressive sensing always collects random measurements, whose information amount cannot be determined in prior. If each measurement is optimized as the most informative measurement, the reconstruction performance can perform much better. Based on the above consideration, this dissertation is focusing on an adaptive sampling approach, which could find the most informative measurements in unknown environments and reconstruct original signals. With mobile sensors, measurements are collect sequentially, giving the chance to uniquely optimize each of them. When mobile sensors are about to collect a new measurement from the surrounding environments, existing information is shared among networked sensors so that each sensor would have a global view of the entire environment. Shared information is analyzed under Haar Wavelet domain, under which most nature signals appear sparse, to infer a model of the environments. The most informative measurements can be determined by optimizing model parameters. As a result, all the measurements collected by the mobile sensor network are the most informative measurements given existing information, and a perfect reconstruction would be expected. To present the adaptive sampling method, a series of research issues will be addressed, including measurement evaluation and collection, mobile network establishment, data fusion, sensor motion, signal reconstruction, etc. Two dimensional scalar field will be reconstructed using the method proposed. Both single mobile sensors and mobile sensor networks will be deployed in the environment, and reconstruction performance of both will be compared.In addition, a particular mobile sensor, a quadrotor UAV is developed, so that the adaptive sampling method can be used in three dimensional scenarios

    Robust Control of Nonlinear Systems with applications to Aerial Manipulation and Self Driving Cars

    Get PDF
    This work considers the problem of planning and control of robots in an environment with obstacles and external disturbances. The safety of robots is harder to achieve when planning in such uncertain environments. We describe a robust control scheme that combines three key components: system identification, uncertainty propagation, and trajectory optimization. Using this control scheme we tackle three problems. First, we develop a Nonlinear Model Predictive Controller (NMPC) for articulated rigid bodies and apply it to an aerial manipulation system to grasp object mid-air. Next, we tackle the problem of obstacle avoidance under unknown external disturbances. We propose two approaches, the first approach using adaptive NMPC with open- loop uncertainty propagation and the second approach using Tube NMPC. After that, we introduce dynamic models which use Artificial Neural Networks (ANN) and combine them with NMPC to control a ground vehicle and an aerial manipulation system. Finally, we introduce a software framework for integrating the above algorithms to perform complex tasks. The software framework provides users with the ability to design systems that are robust to control and hardware failures where preventive action is taken before-hand. The framework also allows for safe testing of control and task logic in simulation before evaluating on the real robot. The software framework is applied to an aerial manipulation system to perform a package sorting task, and extensive experiments demonstrate the ability of the system to recover from failures. In addition to robust control, we present two related control problems. The first problem pertains to designing an obstacle avoidance controller for an underactuated system that is Lyapunov stable. We extend a standard gyroscopic obstacle avoidance controller to be applicable to an underactuated system. The second problem addresses the navigation of an Unmanned Ground Vehicle (UGV) on an unstructured terrain. We propose using NMPC combined with a high fidelity physics engine to generate a reference trajectory that is dynamically feasible and accounts for unsafe areas in the terrain

    Modeling and flight testing of differential thrust and thrust vectoring on a small UAV

    Get PDF
    The primary objectives of this research are to mathematically model the propulsion forces applied to the aircraft during nominal, differential thrust, and thrust vectored flight configurations, and verify this modeling through simulation and flight testing experiments. This thesis outlines the modeling process, simulator development, design, and implementation of a propulsion assisted control system for the WVU Flight Control Systems Lab (FCSL) research aircraft. Differential thrust and thrust vectoring introduce additional propulsive terms in the aircraft force equations that are not present when the thrust line passes through the center of gravity. These additional forces were modeled and incorporated into a simulator of the research aircraft. The effects from differential thrust were small and difficult to quantify. The thrust vectoring effects were also found to be small with the elevator having significantly more pitch control over the vectored motors at the simulated flight conditions.;Differential thrust was implemented using the on-board computer to command a different thrust level to each motor. The desired thrust differential was programed into a flight scheme based on simulation data, and activated during flight via a control switch on the transmitter. The thrust vectoring mechanism was designed using SolidWorksRTM, built and tested outside of the aircraft, and finally incorporated into the aircraft. A high torque servo was used to rotate the motor mounting bar and vector the motors to a desired deflection. Utilizing this mechanism, the thrust vectoring was flight tested, mimicking scenarios tested in simulation. The signal to noise ratio was very low, making it difficult to identify the small changes in the aircraft parameters caused by the vectored thrust

    Immunity-Based Framework for Autonomous Flight in GPS-Challenged Environment

    Get PDF
    In this research, the artificial immune system (AIS) paradigm is used for the development of a conceptual framework for autonomous flight when vehicle position and velocity are not available from direct sources such as the global navigation satellite systems or external landmarks and systems. The AIS is expected to provide corrections of velocity and position estimations that are only based on the outputs of onboard inertial measurement units (IMU). The AIS comprises sets of artificial memory cells that simulate the function of memory T- and B-cells in the biological immune system of vertebrates. The innate immune system uses information about invading antigens and needed antibodies. This information is encoded and sorted by T- and B-cells. The immune system has an adaptive component that can accelerate and intensify the immune response upon subsequent infection with the same antigen. The artificial memory cells attempt to mimic these characteristics for estimation error compensation and are constructed under normal conditions when all sensor systems function accurately, including those providing vehicle position and velocity information. The artificial memory cells consist of two main components: a collection of instantaneous measurements of relevant vehicle features representing the antigen and a set of instantaneous estimation errors or correction features, representing the antibodies. The antigen characterizes the dynamics of the system and is assumed to be correlated with the required corrections of position and velocity estimation or antibodies. When the navigation source is unavailable, the currently measured vehicle features from the onboard sensors are matched against the AIS antigens and the corresponding corrections are extracted and used to adjust the position and velocity estimation algorithm and provide the corrected estimation as actual measurement feedback to the vehicle’s control system. The proposed framework is implemented and tested through simulation in two versions: with corrections applied to the output or the input of the estimation scheme. For both approaches, the vehicle feature or antigen sets include increments of body axes components of acceleration and angular rate. The correction feature or antibody sets include vehicle position and velocity and vehicle acceleration adjustments, respectively. The impact on the performance of the proposed methodology produced by essential elements such as path generation method, matching algorithm, feature set, and the IMU grade was investigated. The findings demonstrated that in all cases, the proposed methodology could significantly reduce the accumulation of dead reckoning errors and can become a viable solution in situations where direct accurate measurements and other sources of information are not available. The functionality of the proposed methodology and its promising outcomes were successfully illustrated using the West Virginia University unmanned aerial system simulation environment

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version
    • …
    corecore