12 research outputs found

    Delay-Optimal Relay Selection in Device-to-Device Communications for Smart Grid

    Get PDF
    The smart grid communication network adopts a hierarchical structure which consists of three kinds of networks which are Home Area Networks (HANs), Neighborhood Area Networks (NANs), and Wide Area Networks (WANs). The smart grid NANs comprise of the communication infrastructure used to manage the electricity distribution to the end users. Cellular technology with LTE-based standards is a widely-used and forward-looking technology hence becomes a promising technology that can meet the requirements of different applications in NANs. However, the LTE has a limitation to cope with the data traffic characteristics of smart grid applications, thus require for enhancements. Device-to-Device (D2D) communications enable direct data transmissions between devices by exploiting the cellular resources, which could guarantee the improvement of LTE performances. Delay is one of the important communication requirements for the real-time smart grid applications. In this paper, the application of D2D communications for the smart grid NANs is investigated to improve the average end-to-end delay of the system. A relay selection algorithm that considers both the queue state and the channel state of nodes is proposed. The optimization problem is formulated as a constrained Markov decision process (CMDP) and a linear programming method is used to find the optimal policy for the CMDP problem. Simulation results are presented to prove the effectiveness of the proposed scheme

    Design, Modeling, and Analysis for MAC Protocols in Ultra-wideband Networks

    Get PDF
    Ultra-wideband (UWB) is an appealing transmission technology for short-range, bandwidth demanded wireless communications. With the data rate of several hundred megabits per second, UWB demonstrates great potential in supporting multimedia streams such as high-definition television (HDTV), voice over Internet Protocol (VoIP), and console gaming in office or home networks, known as the wireless personal area network (WPAN). While vast research effort has been made on the physical layer issues of UWB, the corresponding medium access control (MAC) protocols that exploit UWB technology have not been well developed. Given an extremely wide bandwidth of UWB, a fundamental problem on how to manage multiple users to efficiently utilize the bandwidth is a MAC design issue. Without explicitly considering the physical properties of UWB, existing MAC protocols are not optimized for UWB-based networks. In addition, the limited processing capability of UWB devices poses challenges to the design of low-complexity MAC protocols. In this thesis, we comprehensively investigate the MAC protocols for UWB networks. The objective is to link the physical characteristics of UWB with the MAC protocols to fully exploit its advantage. We consider two themes: centralized and distributed UWB networks. For centralized networks, the most critical issue surrounding the MAC protocol is the resource allocation with fairness and quality of service (QoS) provisioning. We address this issue by breaking down into two scenarios: homogeneous and heterogeneous network configurations. In the homogeneous case, users have the same bandwidth requirement, and the objective of resource allocation is to maximize the network throughput. In the heterogeneous case, users have different bandwidth requirements, and the objective of resource allocation is to provide differentiated services. For both design objectives, the optimal scheduling problem is NP-hard. Our contributions lie in the development of low-complexity scheduling algorithms that fully exploit the characteristics of UWB. For distributed networks, the MAC becomes node-based problems, rather than link-based problems as in centralized networks. Each node either contends for channel access or reserves transmission opportunity through negotiation. We investigate two representative protocols that have been adopted in the WiMedia specification for future UWB-based WPANs. One is a contention-based protocol called prioritized channel access (PCA), which employs the same mechanisms as the enhanced distributed channel access (EDCA) in IEEE 802.11e for providing differentiated services. The other is a reservation-based protocol called distributed reservation protocol (DRP), which allows time slots to be reserved in a distributed manner. Our goal is to identify the capabilities of these two protocols in supporting multimedia applications for UWB networks. To achieve this, we develop analytical models and conduct detailed analysis for respective protocols. The proposed analytical models have several merits. They are accurate and provide close-form expressions with low computational effort. Through a cross-layer approach, our analytical models can capture the near-realistic protocol behaviors, thus useful insights into the protocol can be obtained to improve or fine-tune the protocol operations. The proposed models can also be readily extended to incorporate more sophisticated considerations, which should benefit future UWB network design

    Stochastic performance analysis of Network Function Virtualisation in future internet

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordIEEE Network Function Virtualisation (NFV) has been considered as a promising technology for future Internet to increase network flexibility, accelerate service innovation and reduce the Capital Expenditures (CAPEX) and Operational Expenditures (OPEX) costs, through migrating network functions from dedicated network devices to commodity hardware. Recent studies reveal that although this migration of network function brings the network operation unprecedented flexibility and controllability, NFV-based architecture suffers from serious performance degradation compared with traditional service provisioning on dedicated devices. In order to achieve a comprehensive understanding of the service provisioning capability of NFV, this paper proposes a novel analytical model based on Stochastic Network Calculus (SNC) to quantitatively investigate the end-to-end performance bound of NFV networks. To capture the dynamic and on-demand NFV features, both the non-bursty traffic, e.g. Poisson process, and the bursty traffic, e.g. Markov Modulated Poisson Process (MMPP), are jointly considered in the developed model to characterise the arriving traffic. To address the challenges of resource competition and end-to-end NFV chaining, the property of convolution associativity and leftover service technologies of SNC are exploited to calculate the available resources of Virtual Network Function (VNF) nodes in the presence of multiple competing traffic, and transfer the complex NFV chain into an equivalent system for performance derivation and analysis. Both the numerical analysis and extensive simulation experiments are conducted to validate the accuracy of the proposed analytical model. Results demonstrate that the analytical performance metrics match well with those obtained from the simulation experiments and numerical analysis. In addition, the developed model is used as a practical and cost-effective tool to investigate the strategies of the service chain design and resource allocations in NFV networks.Engineering and Physical Sciences Research Council (EPSRC

    Wireless Throughput and Energy Efficiency under QoS Constraints

    Get PDF
    Mobile data traffic has experienced unprecedented growth recently and is predicted to grow even further over the coming years. As one of the main driving forces behind this growth, wireless transmission of multimedia content has significantly increased in volume and is expected to be the dominant traffic in data communications. Such wireless multimedia traffic requires certain quality-of-service (QoS) guarantees. With these motivations, in the first part of the thesis, throughput and energy efficiency in fading channels are studied in the presence of randomly arriving data and statistical queueing constraints. In particular, Markovian arrival models including discrete-time Markov, Markov fluid, and Markov-modulated Poisson sources are considered, and maximum average arrival rates in the presence of statistical queueing constraints are characterized. Furthermore, energy efficiency is analyzed by determining the minimum energy per bit and wideband slope in the low signal-to-noise ratio (SNR) regime. Following this analysis, energy-efficient power adaptation policies in fading channels are studied when data arrivals are modeled as Markovian processes and statistical QoS constraints are imposed. After formulating energy efficiency (EE) as maximum throughput normalized by the total power consumption, optimal power control policies that maximize EE are obtained for different source models. Next, throughput and energy efficiency of secure wireless transmission of delay sensitive data generated by random sources are investigated. A fading broadcast model in which the transmitter sends confidential and common messages to two receivers is considered. It is assumed that the common and confidential data, generated from Markovian sources, is stored in buffers prior to transmission, and the transmitter operates under constraints on buffer/delay violation probability. Under such statistical QoS constraints, the throughput is determined. In particular, secrecy capacity is used to describe the service rate of buffers containing confidential messages. Moreover, energy efficiency is studied in the low signal-to-noise (SNR) regime. In the final part of the thesis, throughput and energy efficiency are addressed considering the multiuser channel models. Five different channel models, namely, multiple access, broadcast, interference, relay and cognitive radio channels, are considered. In particular, throughput regions of multiple-access fading channels are characterized when multiple users, experiencing random data arrivals, transmit to a common receiver under statistical QoS constraints. Throughput regions of fading broadcast channels with random data arrivals in the presence of QoS requirements are studied when power control is employed at the transmitter. It is assumed that superposition coding with power control is performed at the transmitter with interference cancellation at the receivers. Optimal power control policies that maximize the weighted combination of the average arrival rates are investigated in the two-user case. Energy efficiency in two-user fading interference channels is studied when the transmitters are operating subject to QoS constraints. Specifically, energy efficiency is characterized by determining the corresponding minimum energy per bit requirements and wideband slope regions. Furthermore, transmission over a half-duplex relay channel with secrecy and QoS constraints is studied. Secrecy throughput is derived for the half duplex two-hop fading relay system operating in the presence of an eavesdropper. Fundamental limits on the energy efficiency of cognitive radio transmissions are analyzed in the presence of statistical quality of service (QoS) constraints. Minimum energy per bit and wideband slope expressions are obtained in order to identify the performance limits in terms of energy efficiency

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    Delay and energy efficiency optimizations in smart grid neighbourhood area networks

    Get PDF
    Smart grids play a significant role in addressing climate change and growing energy demand. The role of smart grids includes reducing greenhouse gas emission reduction by providing alternative energy resources to the traditional grid. Smart grids exploit renewable energy resources into the power grid and provide effective two-way communications between smart grid domains for efficient grid control. The smart grid communication plays a pivotal role in coordinating energy generation, energy transmission, and energy distribution. Cellular technology with long term evolution (LTE)-based standards has been a preference for smart grid communication networks. However, integrating the cellular technology and the smart grid communication network puts forth a significant challenge for the LTE because LTE was initially invented for human centric broadband purpose. Delay and energy efficiency are two critical parameters in smart grid communication networks. Some data in smart grids are real-time delay-sensitive data which is crucial in ensuring stability of the grid. On the other hand, when abnormal events occur, most communication devices in smart grids are powered by local energy sources with limited power supply, therefore energy-efficient communications are required. This thesis studies energy-efficient and delay-optimization schemes in smart grid communication networks to make the grid more efficient and reliable. A joint power control and mode selection in device-to-device communications underlying cellular networks is proposed for energy management in the Future Renewable Electric Energy Delivery and Managements system. Moreover, a joint resource allocation and power control in heterogeneous cellular networks is proposed for phasor measurement units to achieve efficient grid control. Simulation results are presented to show the effectiveness of the proposed schemes

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks
    corecore