43 research outputs found

    Energy sustainable paradigms and methods for future mobile networks: A survey

    Full text link
    In this survey, we discuss the role of energy in the design of future mobile networks and, in particular, we advocate and elaborate on the use of energy harvesting (EH) hardware as a means to decrease the environmental footprint of 5G technology. To take full advantage of the harvested (renewable) energy, while still meeting the quality of service required by dense 5G deployments, suitable management techniques are here reviewed, highlighting the open issues that are still to be solved to provide eco-friendly and cost-effective mobile architectures. Several solutions have recently been proposed to tackle capacity, coverage and efficiency problems, including: C-RAN, Software Defined Networking (SDN) and fog computing, among others. However, these are not explicitly tailored to increase the energy efficiency of networks featuring renewable energy sources, and have the following limitations: (i) their energy savings are in many cases still insufficient and (ii) they do not consider network elements possessing energy harvesting capabilities. In this paper, we systematically review existing energy sustainable paradigms and methods to address points (i) and (ii), discussing how these can be exploited to obtain highly efficient, energy self-sufficient and high capacity networks. Several open issues have emerged from our review, ranging from the need for accurate energy, transmission and consumption models, to the lack of accurate data traffic profiles, to the use of power transfer, energy cooperation and energy trading techniques. These challenges are here discussed along with some research directions to follow for achieving sustainable 5G systems.Comment: Accepted by Elsevier Computer Communications, 21 pages, 9 figure

    Low Complexity Delay-Constrained Beamforming for Multi-User MIMO Systems with Imperfect CSIT

    Full text link
    In this paper, we consider the delay-constrained beamforming control for downlink multi-user MIMO (MU- MIMO) systems with imperfect channel state information at the transmitter (CSIT). The delay-constrained control problem is formulated as an infinite horizon average cost partially observed Markov decision process. To deal with the curse of dimensionality, we introduce a virtual continuous time system and derive a closed-form approximate value function using perturbation analysis w.r.t. the CSIT errors. To deal with the challenge of the conditional packet error rate (PER), we build a tractable closed- form approximation using a Bernstein-type inequality. Based on the closed-form approximations of the relative value function and the conditional PER, we propose a conservative formulation of the original beamforming control problem. The conservative problem is non-convex and we transform it into a convex problem using the semidefinite relaxation (SDR) technique. We then propose an alternating iterative algorithm to solve the SDR problem. Finally, the proposed scheme is compared with various baselines through simulations and it is shown that significant performance gain can be achieved.Comment: 14 pages, 7 figures, 1 table. This paper has been accepted by the IEEE Transactions on Signal Processin

    Joint Content Delivery and Caching Placement via Dynamic Programming

    Full text link
    In this paper, downlink delivery of popular content is optimized with the assistance of wireless cache nodes. Specifically, the requests of one file is modeled as a Poisson point process with finite lifetime, and two downlink transmission modes are considered: (1) the base station multicasts file segments to the requesting users and selected cache nodes; (2) the base station proactively multicasts file segments to the selected cache nodes without requests from users. Hence the cache nodes with decoded files can help to offload the traffic upon the next file request via other air interfaces, e.g. WiFi. Without proactive caching placement, we formulate the downlink traffic offloading as a Markov decision process with random number of stages, and propose a revised Bellman's equation to obtain the optimal control policy. In order to address the prohibitively huge state space, we also introduce a low-complexity sub-optimal solution based on linear approximation of the value functions, where the gap between the approximated value functions and the real ones is bounded analytically. The approximated value functions can be calculated from analytical expressions given the spatial distribution of requesting users. Moreover, we propose a learning-based algorithm to evaluate the approximated value functions for unknown distribution of requesting users. Finally, a proactive caching placement algorithm is introduced to exploit the temporal diversity of shadowing effect. It is shown by simulation that the proposed low-complexity algorithm based on approximated value functions can significantly reduce the resource consumption at the base station, and the proactive caching placement can further improve the performance

    Dynamic Virtual Resource Allocation for 5G and Beyond Network Slicing

    Full text link
    The fifth generation and beyond wireless communication will support vastly heterogeneous services and use demands such as massive connection, low latency and high transmission rate. Network slicing has been envisaged as an efficient technology to meet these diverse demands. In this paper, we propose a dynamic virtual resources allocation scheme based on the radio access network (RAN) slicing for uplink communications to ensure the quality-of-service (QoS). To maximum the weighted-sum transmission rate performance under delay constraint, formulate a joint optimization problem of subchannel allocation and power control as an infinite-horizon average-reward constrained Markov decision process (CMDP) problem. Based on the equivalent Bellman equation, the optimal control policy is first derived by the value iteration algorithm. However, the optimal policy suffers from the widely known curse-of-dimensionality problem. To address this problem, the linear value function approximation (approximate dynamic programming) is adopted. Then, the subchannel allocation Q-factor is decomposed into the per-slice Q-factor. Furthermore, the Q-factor and Lagrangian multipliers are updated by the use of an online stochastic learning algorithm. Finally, simulation results reveal that the proposed algorithm can meet the delay requirements and improve the user transmission rate compared with baseline schemes

    D4.3 Final Report on Network-Level Solutions

    Full text link
    Research activities in METIS reported in this document focus on proposing solutions to the network-level challenges of future wireless communication networks. Thereby, a large variety of scenarios is considered and a set of technical concepts is proposed to serve the needs envisioned for the 2020 and beyond. This document provides the final findings on several network-level aspects and groups of solutions that are considered essential for designing future 5G solutions. Specifically, it elaborates on: -Interference management and resource allocation schemes -Mobility management and robustness enhancements -Context aware approaches -D2D and V2X mechanisms -Technology components focused on clustering -Dynamic reconfiguration enablers These novel network-level technology concepts are evaluated against requirements defined by METIS for future 5G systems. Moreover, functional enablers which can support the solutions mentioned aboveare proposed. We find that the network level solutions and technology components developed during the course of METIS complement the lower layer technology components and thereby effectively contribute to meeting 5G requirements and targets.Aydin, O.; Valentin, S.; Ren, Z.; Botsov, M.; Lakshmana, TR.; Sui, Y.; Sun, W.... (2015). D4.3 Final Report on Network-Level Solutions. http://hdl.handle.net/10251/7675

    Next-generation Wireless Solutions for the Smart Factory, Smart Vehicles, the Smart Grid and Smart Cities

    Full text link
    5G wireless systems will extend mobile communication services beyond mobile telephony, mobile broadband, and massive machine-type communication into new application domains, namely the so-called vertical domains including the smart factory, smart vehicles, smart grid, smart city, etc. Supporting these vertical domains comes with demanding requirements: high-availability, high-reliability, low-latency, and in some cases, high-accuracy positioning. In this survey, we first identify the potential key performance requirements of 5G communication in support of automation in the vertical domains and highlight the 5G enabling technologies conceived for meeting these requirements. We then discuss the key challenges faced both by industry and academia which have to be addressed in order to support automation in the vertical domains. We also provide a survey of the related research dedicated to automation in the vertical domains. Finally, our vision of 6G wireless systems is discussed briefly

    Energy aware management of 5G networks

    Get PDF
    Doctor of PhilosophyDepartment of Electrical and Computer EngineeringBalasubramaniam NatarajanThe number of wireless devices is predicted to skyrocket from about 5 billion in 2015 to 25 billion by 2020. Therefore, traffic volume demand is envisioned to explode in the very near future. The proposed fifth generation (5G) of mobile networks is expected to be a mixture of network components with different sizes, transmit powers, back-haul connections and radio access technologies. While there are many interesting problems within the 5G framework, we address the challenges of energy-related management in a heterogeneous 5G networks. Based on the 5G architecture, in this dissertation, we present some fundamental methodologies to analyze and improve the energy efficiency of 5G network components using mathematical tools from optimization, control theory and stochastic geometry. Specifically, the main contributions of this research include: • We design power-saving modes in small cells to maximize energy efficiency. We first derive performance metrics for heterogeneous cellular networks with sleep modes based on stochastic geometry. Then we quantify the energy efficiency and maximize it with quality-of-service constraint based on an analytical model. We also develop a simple sleep strategy to further improve the energy efficiency according to traffic conditions. • We conduct a techno-economic analysis of heterogeneous cellular networks powered by both on-grid electricity and renewable energy. We propose a scheme to minimize the electricity cost based on a real-time pricing model. • We provide a framework to uncover desirable system design parameters that offer the best gains in terms of ergodic capacity and average achievable throughput for device-to-device underlay cellular networks. We also suggest a two-phase scheme to optimize the ergodic capacity while minimizing the total power consumption. • We investigate the modeling and analysis of simultaneous information and energy transfer in Internet of things and evaluate both transmission outage probability and power outage probability. Then we try to balance the trade-off between the outage performances by careful design of the power splitting ratio. This research provides valuable insights related to the trade-offs between energy-conservation and system performance in 5G networks. Theoretical and simulation results help verify the performance of the proposed algorithms

    Online energy efficient packet scheduling for a common deadline with and without energy harvesting

    Full text link
    The problem of online packet scheduling to minimize the required conventional grid energy for transmitting a fixed number of packets given a common deadline is considered. The total number of packets arriving within the deadline is known, but the packet arrival times are unknown, and can be arbitrary. The proposed algorithm tries to finish the transmission of each packet assuming all future packets are going to arrive at equal time intervals within the left-over time. The proposed online algorithm is shown to have competitive ratio that is logarithmic in the number of packet arrivals. The hybrid energy paradigm is also considered, where in addition to grid energy, energy is also available via extraction from renewable sources. The objective here is to minimize the grid energy use. A suitably modified version of the previous algorithm is also shown to have competitive ratio that is logarithmic in the number of packet arrivals

    Optimal Power Allocation for Energy Harvesting and Power Grid Coexisting Wireless Communication Systems

    Full text link
    This paper considers the power allocation of a single-link wireless communication with joint energy harvesting and grid power supply. We formulate the problem as minimizing the grid power consumption with random energy and data arrival, and analyze the structure of the optimal power allocation policy in some special cases. For the case that all the packets are arrived before transmission, it is a dual problem of throughput maximization, and the optimal solution is found by the two-stage water filling (WF) policy, which allocates the harvested energy in the first stage, and then allocates the power grid energy in the second stage. For the random data arrival case, we first assume grid energy or harvested energy supply only, and then combine the results to obtain the optimal structure of the coexisting system. Specifically, the reverse multi-stage WF policy is proposed to achieve the optimal power allocation when the battery capacity is infinite. Finally, some heuristic online schemes are proposed, of which the performance is evaluated by numerical simulations.Comment: 29 pages, 11 figures, submitted to IEEE Transactions on Communication

    Traffic Adaptation and Energy Efficiency for Small Cell Networks with Dynamic TDD

    Get PDF
    The traffic in current wireless networks exhibits large variations in uplink (UL) and downlink (DL), which brings huge challenges to network operators in efficiently allocating radio resources. Dynamic time-division duplex (TDD) is considered as a promising scheme that is able to adjust the resource allocation to the instantaneous UL and DL traffic conditions, also known as traffic adaptation. In this work, we study how traffic adaptation and energy harvesting can improve the energy efficiency (EE) in multi-antenna small cell networks operating dynamic TDD. Given the queue length distribution of small cell access points (SAPs) and mobile users (MUs), we derive the optimal UL/DL configuration to minimize the service time of a typical small cell, and show that the UL/DL configuration that minimizes the service time also results in an optimal network EE, but does not necessarily achieve the optimal EE for SAP or MU individually. To further enhance the network EE, we provide SAPs with energy harvesting capabilities, and model the status of harvested energy at each SAP using a Markov chain. We derive the availability of the rechargeable battery under several battery utilization strategies, and observe that energy harvesting can significantly improve the network EE in the low traffic load regime. In summary, the proposed analytical framework allows us to elucidate the relationship between traffic adaptation and network EE in future dense networks with dynamic TDD. With this work, we quantify the potential benefits of traffic adaptation and energy harvesting in terms of service time and EE
    corecore