10,704 research outputs found

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle

    Phase Synchronization in Railway Timetables

    Full text link
    Timetable construction belongs to the most important optimization problems in public transport. Finding optimal or near-optimal timetables under the subsidiary conditions of minimizing travel times and other criteria is a targeted contribution to the functioning of public transport. In addition to efficiency (given, e.g., by minimal average travel times), a significant feature of a timetable is its robustness against delay propagation. Here we study the balance of efficiency and robustness in long-distance railway timetables (in particular the current long-distance railway timetable in Germany) from the perspective of synchronization, exploiting the fact that a major part of the trains run nearly periodically. We find that synchronization is highest at intermediate-sized stations. We argue that this synchronization perspective opens a new avenue towards an understanding of railway timetables by representing them as spatio-temporal phase patterns. Robustness and efficiency can then be viewed as properties of this phase pattern

    Robustness Tests for Public Transport Planning

    Get PDF
    The classical planning process in public transport planning focuses on the two criteria operating costs and quality for passengers. Quality mostly considers quantities like average travel time and number of transfers. Since public transport often suffers from delays caused by random disturbances, we are interested in adding a third dimension: robustness. We propose passenger-oriented robustness indicators for public transport networks and timetables. These robustness indicators are evaluated for several public transport plans which have been created for an artificial urban network with the same demand. The study shows that these indicators are suitable to measure the robustness of a line plan and a timetable. We explore different trade-offs between operating costs, quality (average travel time of passengers), and robustness against delays. Our results show that the proposed robustness indicators give reasonable results

    Performance Measures to Assess Resiliency and Efficiency of Transit Systems

    Get PDF
    Transit agencies are interested in assessing the short-, mid-, and long-term performance of infrastructure with the objective of enhancing resiliency and efficiency. This report addresses three distinct aspects of New Jersey’s Transit System: 1) resiliency of bridge infrastructure, 2) resiliency of public transit systems, and 3) efficiency of transit systems with an emphasis on paratransit service. This project proposed a conceptual framework to assess the performance and resiliency for bridge structures in a transit network before and after disasters utilizing structural health monitoring (SHM), finite element (FE) modeling and remote sensing using Interferometric Synthetic Aperture Radar (InSAR). The public transit systems in NY/NJ were analyzed based on their vulnerability, resiliency, and efficiency in recovery following a major natural disaster

    Efficient Traffic Assignment for Public Transit Networks

    Get PDF
    We study the problem of computing traffic assignments for public transit networks: Given a public transit network and a demand (i.e. a list of passengers, each with associated origin, destination, and departure time), the objective is to compute the utilization of every vehicle. Efficient assignment algorithms are a core component of many urban traffic planning tools. In this work, we present a novel algorithm for computing public transit assignments. Our approach is based upon a microscopic Monte Carlo simulation of individual passengers. In order to model realistic passenger behavior, we base all routing decisions on travel time, number of transfers, time spent walking or waiting, and delay robustness. We show how several passengers can be processed during a single scan of the network, based on the Connection Scan Algorithm [Dibbelt et al., LNCS Springer 2013], resulting in a highly efficient algorithm. We conclude with an experimental study, showing that our assignments are comparable in terms of quality to the state-of-the-art. Using the parallelized version of our algorithm, we are able to compute a traffic assignment for more than ten million passengers in well below a minute, which outperforms previous works by more than an order of magnitude

    Efficiency and Robustness in Railway Operations

    Get PDF

    Shuttle Planning for Link Closures in Urban Public Transport Networks

    Get PDF
    Urban Public Transport systems must periodically close certain links for main- tenance, which can have significant effects on the service provided to passengers. In practice, the effects of closures are mitigated by replacing the link with a simple shuttle service. However, alternative shuttle services could reduce inconvenience at lower op- erating cost. This paper proposes a model to select shuttle lines and frequencies under budget constraints. A new formulation is proposed that allows a minimal frequency restriction on any line that is operated, and minimizes passenger inconvenience cost, including transfers and frequency-dependent waiting time. This model is applied to a shuttle design problem based on a real world case study of the MBTA network of Boston (USA). The results show that additional shuttle routes can reduce passenger delay in comparison to the standard industry practice, while also distributing delay more equally over passengers, at the same operating budget. The results are robust under different assumptions about passenger route choice behavior. Computational experiments show that the proposed formulation, coupled with a preprocessing step, can be solved faster than prior formulations

    Delay-Robust Journeys in Timetable Networks with Minimum Expected Arrival Time

    Get PDF
    We study the problem of computing delay-robust routes in timetable networks. Instead of a single path we compute a decision graph containing all stops and trains/vehicles that might be relevant. Delays are formalized using a stochastic model. We show how to compute a decision graph that minimizes the expected arrival time while bounding the latest arrival time over all sub-paths. Finally we show how the information contained within a decision graph can compactly be represented to the user. We experimentally evaluate our algorithms and show that the running times allow for interactive usage on a realistic train network
    • …
    corecore