547 research outputs found

    Wireless Video Caching and Dynamic Streaming under Differentiated Quality Requirements

    Full text link
    This paper considers one-hop device-to-device (D2D)-assisted wireless caching networks that cache video files of varying quality levels, with the assumption that the base station can control the video quality but cache-enabled devices cannot. Two problems arise in such a caching network: file placement problem and node association problem. This paper suggests a method to cache videos of different qualities, and thus of varying file sizes, by maximizing the sum of video quality measures that users can enjoy. There exists an interesting trade-off between video quality and video diversity, i.e., the ability to provision diverse video files. By caching high-quality files, the cache-enabled devices can provide high-quality video, but cannot cache a variety of files. Conversely, when the device caches various files, it cannot provide a good quality for file-requesting users. In addition, when multiple devices cache the same file but their qualities are different, advanced node association is required for file delivery. This paper proposes a node association algorithm that maximizes time-averaged video quality for multiple users under a playback delay constraint. In this algorithm, we also consider request collision, the situation where several users request files from the same device at the same time, and we propose two ways to cope with the collision: scheduling of one user and non-orthogonal multiple access. Simulation results verify that the proposed caching method and the node association algorithm work reliably.Comment: 13 pages, 11 figures, accepted for publication in IEEE Journal on Selected Areas in Communication

    Cooperative Multi-Bitrate Video Caching and Transcoding in Multicarrier NOMA-Assisted Heterogeneous Virtualized MEC Networks

    Get PDF
    Cooperative video caching and transcoding in mobile edge computing (MEC) networks is a new paradigm for future wireless networks, e.g., 5G and 5G beyond, to reduce scarce and expensive backhaul resource usage by prefetching video files within radio access networks (RANs). Integration of this technique with other advent technologies, such as wireless network virtualization and multicarrier non-orthogonal multiple access (MC-NOMA), provides more flexible video delivery opportunities, which leads to enhancements both for the network's revenue and for the end-users' service experience. In this regard, we propose a two-phase RAF for a parallel cooperative joint multi-bitrate video caching and transcoding in heterogeneous virtualized MEC networks. In the cache placement phase, we propose novel proactive delivery-aware cache placement strategies (DACPSs) by jointly allocating physical and radio resources based on network stochastic information to exploit flexible delivery opportunities. Then, for the delivery phase, we propose a delivery policy based on the user requests and network channel conditions. The optimization problems corresponding to both phases aim to maximize the total revenue of network slices, i.e., virtual networks. Both problems are non-convex and suffer from high-computational complexities. For each phase, we show how the problem can be solved efficiently. We also propose a low-complexity RAF in which the complexity of the delivery algorithm is significantly reduced. A Delivery-aware cache refreshment strategy (DACRS) in the delivery phase is also proposed to tackle the dynamically changes of network stochastic information. Extensive numerical assessments demonstrate a performance improvement of up to 30% for our proposed DACPSs and DACRS over traditional approaches.Comment: 53 pages, 24 figure

    Cross-Layer Energy Efficient Resource Allocation in PD-NOMA based H-CRANs: Implementation via GPU

    Full text link
    In this paper, we propose a cross layer energy efficient resource allocation and remote radio head (RRH) selection algorithm for heterogeneous traffic in power domain - non-orthogonal multiple access (PD-NOMA) based heterogeneous cloud radio access networks (H-CRANs). The main aim is to maximize the EE of the elastic users subject to the average delay constraint of the streaming users and the constraints, RRH selection, subcarrier, transmit power and successive interference cancellation. The considered optimization problem is non-convex, NP-hard and intractable. To solve this problem, we transform the fractional objective function into a subtractive form. Then, we utilize successive convex approximation approach. Moreover, in order to increase the processing speed, we introduce a framework for accelerating the successive convex approximation for low complexity with the Lagrangian method on graphics processing unit. Furthermore, in order to show the optimality gap of the proposed successive convex approximation approach, we solve the proposed optimization problem by applying an optimal method based on the monotonic optimization. Studying different scenarios show that by using both PD-NOMA technique and H-CRAN, the system energy efficiency is improved

    V2X Meets NOMA: Non-Orthogonal Multiple Access for 5G Enabled Vehicular Networks

    Full text link
    Benefited from the widely deployed infrastructure, the LTE network has recently been considered as a promising candidate to support the vehicle-to-everything (V2X) services. However, with a massive number of devices accessing the V2X network in the future, the conventional OFDM-based LTE network faces the congestion issues due to its low efficiency of orthogonal access, resulting in significant access delay and posing a great challenge especially to safety-critical applications. The non-orthogonal multiple access (NOMA) technique has been well recognized as an effective solution for the future 5G cellular networks to provide broadband communications and massive connectivity. In this article, we investigate the applicability of NOMA in supporting cellular V2X services to achieve low latency and high reliability. Starting with a basic V2X unicast system, a novel NOMA-based scheme is proposed to tackle the technical hurdles in designing high spectral efficient scheduling and resource allocation schemes in the ultra dense topology. We then extend it to a more general V2X broadcasting system. Other NOMA-based extended V2X applications and some open issues are also discussed.Comment: Accepted by IEEE Wireless Communications Magazin

    Scheduling Optimization of Heterogeneous Services by Resolving Conflicts

    Full text link
    Fifth generation (5G) new radio introduced flexible numerology to provide the necessary flexibility for accommodating heterogeneous services. However, optimizing the scheduling of heterogeneous services with differing delay and throughput requirements over 5G new radio is a challenging task. In this paper, we investigate near optimal, low complexity scheduling of radio resources for ultra-reliable low-latency communications (URLLC) when coexisting with enhanced mobile broadband (eMBB) services. We demonstrate that maximizing the sum throughput of eMBB services while servicing URLLC users, is, in the long-term, equivalent to minimizing the number of URLLC placements in the time-frequency grid; this result stems from reducing the number of infeasible placements for eMBB, to which we refer to as "conflicts". To meet this new objective, we propose and investigate new conflict-aware heuristics; a family of "greedy" and a lightweight heuristic inspired by bin packing optimization, all of near optimal performance. Moreover, having shed light on the impact of conflict in layer-2 scheduling, non-orthogonal multiple access (NOMA) emerges as a competitive approach for conflict resolution, in addition to the well established increased spectral efficiency with respect to OMA. The superior performance of NOMA, thanks to alleviating conflicts,is showcased by extensive numerical results

    Machine Learning for Resource Management in Cellular and IoT Networks: Potentials, Current Solutions, and Open Challenges

    Full text link
    Internet-of-Things (IoT) refers to a massively heterogeneous network formed through smart devices connected to the Internet. In the wake of disruptive IoT with a huge amount and variety of data, Machine Learning (ML) and Deep Learning (DL) mechanisms will play a pivotal role to bring intelligence to the IoT networks. Among other aspects, ML and DL can play an essential role in addressing the challenges of resource management in large-scale IoT networks. In this article, we conduct a systematic and in-depth survey of the ML- and DL-based resource management mechanisms in cellular wireless and IoT networks. We start with the challenges of resource management in cellular IoT and low-power IoT networks, review the traditional resource management mechanisms for IoT networks, and motivate the use of ML and DL techniques for resource management in these networks. Then, we provide a comprehensive survey of the existing ML- and DL-based resource allocation techniques in wireless IoT networks and also techniques specifically designed for HetNets, MIMO and D2D communications, and NOMA networks. To this end, we also identify the future research directions in using ML and DL for resource allocation and management in IoT networks.Comment: 21 pages, 3 figure

    Intelligent Scheduling and Power Control for Multimedia Transmission in 5G CoMP Systems: A Dynamic Bargaining Game

    Full text link
    Intelligent terminals support a large number of multimedia, such as picture, audio, video, and so on. The coexistence of various multimedia makes it necessary to provide service for different requests. In this work, we consider interference-aware coordinated multi-point (CoMP) to mitigate inter-cell interference and improve total throughput in the fifth-generation (5G) mobile networks. To select the scheduled edge users, cluster the cooperative base stations (BSs), and determine the transmitting power, a novel dynamic bargaining approach is proposed. Based on affinity propagation, we first select the users to be scheduled and the cooperative BSs serving them respectively. Then, based on the Nash bargaining solution (NBS), we develop a power control scheme considering the transmission delay, which guarantees a generalized proportional fairness among users. Simulation results demonstrate the superiority of the user-centric scheduling and power control methods in 5G CoMP systems.Comment: 11 pages, 14 figures, This paper is accepted for publication in the IEEE Journal on Selected Areas in Communications (JSAC) Special Issue on "Multimedia Economics for Future Networks: Theory Methods , and Application" on 21 April 201

    Max-Min Fairness Based on Cooperative-NOMA Clustering for Ultra-Reliable and Low-Latency Communications

    Full text link
    In this paper, the performance of a cooperative relaying technique in a non-orthogonal multiple access (NOMA) system, briefly named cooperative NOMA (C-NOMA), is considered in short packet communications with finite blocklength (FBL) codes. We examine the performance of a decode-and-forward (DF) relaying along with selection combining (SC) and maximum ratio combining (MRC) strategies at the receiver. Our goal is user clustering based on C-NOMA to maximize fair throughput in a DL-NOMA scenario. In each cluster, the user with a stronger channel (strong user) acts as a relay for the other one (weak user), and optimal power and blocklength are allocated to achieve max-min throughput.Comment: 11 pages, 6 figures, This paper has been submitted for IEEE systems journa

    Network-Connected UAV Communications: Potentials and Challenges

    Full text link
    This article explores the use of network-connected unmanned aerial vehicle (UAV) communications as a compelling solution to achieve high-rate information transmission and support ultra-reliable UAV remote command and control. We first discuss the use cases of UAVs and the resulting communication requirements, accompanied with a flexible architecture for network-connected UAV communications. Then, the signal transmission and interference characteristics are theoretically analyzed, and subsequently we highlight the design and optimization considerations, including antenna design, non-orthogonal multiple access communications, as well as network selection and association optimization. Finally, case studies are provided to show the feasibility of network-connected UAV communications

    Fast Grant Learning-Based Approach for Machine Type Communications with NOMA

    Full text link
    In this paper, we propose a non-orthogonal multiple access (NOMA)-based communication framework that allows machine type devices (MTDs) to access the network while avoiding congestion. The proposed technique is a 2-step mechanism that first employs fast uplink grant to schedule the devices without sending a request to the base station (BS). Secondly, NOMA pairing is employed in a distributed manner to reduce signaling overhead. Due to the limited capability of information gathering at the BS in massive scenarios, learning techniques are best fit for such problems. Therefore, multi-arm bandit learning is adopted to schedule the fast grant MTDs. Then, constrained random NOMA pairing is proposed that assists in decoupling the two main challenges of fast uplink grant schemes namely, active set prediction and optimal scheduling. Using NOMA, we were able to significantly reduce the resource wastage due to prediction errors. Additionally, the results show that the proposed scheme can easily attain the impractical optimal OMA performance, in terms of the achievable rewards, at an affordable complexity
    • …
    corecore