3,484 research outputs found

    Recent advances on filtering and control for nonlinear stochastic complex systems with incomplete information: A survey

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2012 Hindawi PublishingSome recent advances on the filtering and control problems for nonlinear stochastic complex systems with incomplete information are surveyed. The incomplete information under consideration mainly includes missing measurements, randomly varying sensor delays, signal quantization, sensor saturations, and signal sampling. With such incomplete information, the developments on various filtering and control issues are reviewed in great detail. In particular, the addressed nonlinear stochastic complex systems are so comprehensive that they include conventional nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor networks. The corresponding filtering and control technologies for such nonlinear stochastic complex systems are then discussed. Subsequently, some latest results on the filtering and control problems for the complex systems with incomplete information are given. Finally, conclusions are drawn and several possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61104125, 61028008, 61174136, 60974030, and 61074129, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Extended Kalman filtering with stochastic nonlinearities and multiple missing measurements

    Get PDF
    Copyright @ 2012 ElsevierIn this paper, the extended Kalman filtering problem is investigated for a class of nonlinear systems with multiple missing measurements over a finite horizon. Both deterministic and stochastic nonlinearities are included in the system model, where the stochastic nonlinearities are described by statistical means that could reflect the multiplicative stochastic disturbances. The phenomenon of measurement missing occurs in a random way and the missing probability for each sensor is governed by an individual random variable satisfying a certain probability distribution over the interval [0,1]. Such a probability distribution is allowed to be any commonly used distribution over the interval [0,1] with known conditional probability. The aim of the addressed filtering problem is to design a filter such that, in the presence of both the stochastic nonlinearities and multiple missing measurements, there exists an upper bound for the filtering error covariance. Subsequently, such an upper bound is minimized by properly designing the filter gain at each sampling instant. It is shown that the desired filter can be obtained in terms of the solutions to two Riccati-like difference equations that are of a form suitable for recursive computation in online applications. An illustrative example is given to demonstrate the effectiveness of the proposed filter design scheme.This work was supported in part by the National 973 Project under Grant 2009CB320600, National Natural Science Foundation of China under Grants 61028008, 61134009 and 60825303, the State Key Laboratory of Integrated Automation for the Process Industry (Northeastern University) of China, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Probability-guaranteed H∞ finite-horizon filtering for a class of nonlinear time-varying systems with sensor saturations

    Get PDF
    This is the Post-Print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 ElsevierIn this paper, the probability-guaranteed H∞ finite-horizon filtering problem is investigated for a class of nonlinear time-varying systems with uncertain parameters and sensor saturations. The system matrices are functions of mutually independent stochastic variables that obey uniform distributions over known finite ranges. Attention is focused on the construction of a time-varying filter such that the prescribed H∞ performance requirement can be guaranteed with probability constraint. By using the difference linear matrix inequalities (DLMIs) approach, sufficient conditions are established to guarantee the desired performance of the designed finite-horizon filter. The time-varying filter gains can be obtained in terms of the feasible solutions of a set of DLMIs that can be recursively solved by using the semi-definite programming method. A computational algorithm is specifically developed for the addressed probability-guaranteed H∞ finite-horizon filtering problem. Finally, a simulation example is given to illustrate the effectiveness of the proposed filtering scheme.This work was supported in part by the National Natural Science Foundation of China under Grants 61028008, 60825303 and 60834003, National 973 Project under Grant 2009CB320600, the Fok Ying Tung Education Fund under Grant 111064, the Special Fund for the Author of National Excellent Doctoral Dissertation of China under Grant 2007B4, the Key Laboratory of Integrated Automation for the Process Industry (Northeastern University) from the Ministry of Education of China, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    On delayed genetic regulatory networks with polytopic uncertainties: Robust stability analysis

    Get PDF
    Copyright [2008] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, we investigate the robust asymptotic stability problem of genetic regulatory networks with time-varying delays and polytopic parameter uncertainties. Both cases of differentiable and nondifferentiable time-delays are considered, and the convex polytopic description is utilized to characterize the genetic network model uncertainties. By using a Lyapunov functional approach and linear matrix inequality (LMI) techniques, the stability criteria for the uncertain delayed genetic networks are established in the form of LMIs, which can be readily verified by using standard numerical software. An important feature of the results reported here is that all the stability conditions are dependent on the upper and lower bounds of the delays, which is made possible by using up-to-date techniques for achieving delay dependence. Another feature of the results lies in that a novel Lyapunov functional dependent on the uncertain parameters is utilized, which renders the results to be potentially less conservative than those obtained via a fixed Lyapunov functional for the entire uncertainty domain. A genetic network example is employed to illustrate the applicability and usefulness of the developed theoretical results

    Robust H∞ filtering for discrete nonlinear stochastic systems with time-varying delay

    Get PDF
    This is the postprint version of the article. The official published version can be accessed from the link below - © 2007 Elsevier IncIn this paper, we are concerned with the robust H∞ filtering problem for a class of nonlinear discrete time-delay stochastic systems. The system under study involves parameter uncertainties, stochastic disturbances, time-varying delays and sector-like nonlinearities. The problem addressed is the design of a full-order filter such that, for all admissible uncertainties, nonlinearities and time delays, the dynamics of the filtering error is constrained to be robustly asymptotically stable in the mean square, and a prescribed H∞ disturbance rejection attenuation level is also guaranteed. By using the Lyapunov stability theory and some new techniques, sufficient conditions are first established to ensure the existence of the desired filtering parameters. These conditions are dependent on the lower and upper bounds of the time-varying delays. Then, the explicit expression of the desired filter gains is described in terms of the solution to a linear matrix inequality (LMI). Finally, a numerical example is exploited to show the usefulness of the results derived.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G, the Alexander von Humboldt Foundation of Germany, the National Natural Science Foundation of China (60774073 and 10471119), the NSF of Jiangsu Province of China (BK2007075 and BK2006064), the Natural Science Foundation of Jiangsu Education Committee of China under Grant 06KJD110206, and the Scientific Innovation Fund of Yangzhou University of China under Grant 2006CXJ002

    H∞ filtering for uncertain stochastic time-delay systems with sector-bounded nonlinearities

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2008 Elsevier Ltd.In this paper, we deal with the robust H∞ filtering problem for a class of uncertain nonlinear time-delay stochastic systems. The system under consideration contains parameter uncertainties, Itô-type stochastic disturbances, time-varying delays, as well as sector-bounded nonlinearities. We aim at designing a full-order filter such that, for all admissible uncertainties, nonlinearities and time delays, the dynamics of the filtering error is guaranteed to be robustly asymptotically stable in the mean square, while achieving the prescribed H∞ disturbance rejection attenuation level. By using the Lyapunov stability theory and Itô’s differential rule, sufficient conditions are first established to ensure the existence of the desired filters, which are expressed in the form of a linear matrix inequality (LMI). Then, the explicit expression of the desired filter gains is also characterized. Finally, a numerical example is exploited to show the usefulness of the results derived.This paper was not presented at any IFAC meeting. This paper was recommended for publication in revised form by Associate Editor Tongwen Chen under the direction of Editor Ian Petersen. This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, an International Joint Project sponsored by the Royal Society of the UK and the NSFC of China, the Alexander von Humboldt Foundation of Germany, the Natural Science Foundation of Jiangsu Province of China under Grant BK2007075, the Natural Science Foundation of Jiangsu Education Committee of China under Grant 06KJD110206, the National Natural Science Foundation of China under Grants 60774073 and 10671172, and the Scientific Innovation Fund of Yangzhou University of China under Grant 2006CXJ002

    Performance analysis with network-enhanced complexities: On fading measurements, event-triggered mechanisms, and cyber attacks

    Get PDF
    Copyright © 2014 Derui Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Nowadays, the real-world systems are usually subject to various complexities such as parameter uncertainties, time-delays, and nonlinear disturbances. For networked systems, especially large-scale systems such as multiagent systems and systems over sensor networks, the complexities are inevitably enhanced in terms of their degrees or intensities because of the usage of the communication networks. Therefore, it would be interesting to (1) examine how this kind of network-enhanced complexities affects the control or filtering performance; and (2) develop some suitable approaches for controller/filter design problems. In this paper, we aim to survey some recent advances on the performance analysis and synthesis with three sorts of fashionable network-enhanced complexities, namely, fading measurements, event-triggered mechanisms, and attack behaviors of adversaries. First, these three kinds of complexities are introduced in detail according to their engineering backgrounds, dynamical characteristic, and modelling techniques. Then, the developments of the performance analysis and synthesis issues for various networked systems are systematically reviewed. Furthermore, some challenges are illustrated by using a thorough literature review and some possible future research directions are highlighted.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 61203139, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
    corecore