55,013 research outputs found

    On soft/hard handoff for packet data services in cellular CDMA mobiles systems

    Get PDF
    Benefits of macrodiversity operation for packet data services in third generation mobile systems are not obvious. Retransmission procedures to enhance link performance and higher downlink bandwidth requirements could question macrodiversity usage. This paper describes a simple methodology to compare soft and hard handoff performance in terms of transmission delay for packet data services. The handover procedures are based exclusively on power criteria and hysteresis margins.Peer ReviewedPostprint (published version

    Random Access Transport Capacity

    Full text link
    We develop a new metric for quantifying end-to-end throughput in multihop wireless networks, which we term random access transport capacity, since the interference model presumes uncoordinated transmissions. The metric quantifies the average maximum rate of successful end-to-end transmissions, multiplied by the communication distance, and normalized by the network area. We show that a simple upper bound on this quantity is computable in closed-form in terms of key network parameters when the number of retransmissions is not restricted and the hops are assumed to be equally spaced on a line between the source and destination. We also derive the optimum number of hops and optimal per hop success probability and show that our result follows the well-known square root scaling law while providing exact expressions for the preconstants as well. Numerical results demonstrate that the upper bound is accurate for the purpose of determining the optimal hop count and success (or outage) probability.Comment: Submitted to IEEE Trans. on Wireless Communications, Sept. 200

    An Energy-conscious Transport Protocol for Multi-hop Wireless Networks

    Full text link
    We present a transport protocol whose goal is to reduce power consumption without compromising delivery requirements of applications. To meet its goal of energy efficiency, our transport protocol (1) contains mechanisms to balance end-to-end vs. local retransmissions; (2) minimizes acknowledgment traffic using receiver regulated rate-based flow control combined with selected acknowledgements and in-network caching of packets; and (3) aggressively seeks to avoid any congestion-based packet loss. Within a recently developed ultra low-power multi-hop wireless network system, extensive simulations and experimental results demonstrate that our transport protocol meets its goal of preserving the energy efficiency of the underlying network.Defense Advanced Research Projects Agency (NBCHC050053
    • …
    corecore