619 research outputs found

    Energy efficient DBA algorithms for TWDM-PONs

    Get PDF
    Energy efficiency is of a vital significance in the design of next generation time and wavelength division multiplexed passive optical networks (TWDM-PONs). In this paper, we first review strategies to save energy in TWDM-PONs using the state-of-the-art dynamic bandwidth allocation (DBA) algorithms. The DBA algorithms should not only minimize energy consumption but should impose a minimal penalty on delay performance. In this context, mainly two DBA design paradigms can be exploited: offline and online. After reviewing the performance of various design paradigms, we propose an optimal algorithm, which minimizes the energy consumption at both the OLT and the ONUs, by combining the energy efficiency due to sleep modes and the load dependent use of transceivers at the OLT. Due to this, the average energy consumption is reduced to 31%

    Dynamic bandwidth allocation with optimal wavelength switching in TWDM-PONs

    Get PDF
    Time and wavelength division multiplexed passive optical networks (TWDM-PONs) have been widely considered as one of the next evolutionary steps of optical access networks. A variety of algorithms exists that explore the problem of scheduling and wavelength assignment in TWDM-PONs. These algorithms, however, allow unlimited switching of wavelengths. In reality, wavelength switching increases guard bands due to the tuning and the switching time of components, limiting channel utilization and increasing packet delays. We propose a novel dynamic bandwidth allocation (DBA) algorithm for TWDM-PON that minimizes the performance degradation due to excessive wavelength switching

    Architectures and dynamic bandwidth allocation algorithms for next generation optical access networks

    Get PDF

    General QoS-Aware Scheduling Procedure for Passive Optical Networks

    Get PDF
    Increasing volume, dynamism, and diversity of access traffic have complicated the challenging problem of dynamic resource allocation in passive optical networks. We introduce a general scheduling procedure for passive optical networks, which optimizes a desired performance metric for an arbitrary set of operational constraints. The proposed scheduling has a fast and causal iterative implementation, where each iteration involves a local optimization problem followed by a recursive update of some status information. The generality of the platform enables a proper description of the diverse quality of service requirements, while its low computational complexity makes agile tracking of the network dynamism possible. To demonstrate its versatility and generality, the applications of the scheme for service-differentiated dynamic bandwidth allocation in time- and wavelength-division-multiplexed passive optical networks are discussed. To further reduce the computational complexity, a closed-form solution of the involved optimization in each iteration of the scheduling is derived. We directly incorporate transmission delay in the scheduling and show how the consumed power is traded for the tolerable amount of transmission delay. Furthermore, a 50% power efficiency improvement is reported by exploiting the inherent service diversity among subscribers. The impact of service prioritization, finite buffer length, and packet drops on the power efficiency of the scheme are also investigated

    Full-Service MAC Protocol for Metro-Reach GPONs

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”An advanced medium access control protocol is presented demonstrating dynamic bandwidth allocation for long-reach gigabit-capable passive optical networks (GPONs). The protocol enables the optical line terminal to overlap the idle time slots in each packet transmission cycle with a virtual polling cycle to increase the effective transmission bandwidth. Contrasting the new scheme with developed algorithms, network modeling has exhibited significant improvement in channel throughput, mean packet delay, and packet loss rate in the presence of class-of-service and service-level differentiation. In particular, the displayed 34% increase in the overall channel throughput and 30 times reduction in mean packet delay for service-level 1 and service-level 2 optical network units (ONUs) at accustomed 50% ONU load constitutes the highest extended-reach GPON performance reported up to date.Peer reviewe

    New dynamic bandwidth allocation algorithm analysis: DDSPON for ethernet passive optical networks

    Get PDF
    This project aims to present the state of the art in Dynamic Bandwidth Allocation (DBA) solutions, as well as the study and evaluation of one proposal of DBA algorithm: the Distributed Dynamic Scheduling for EPON (DDSPON), which is the UPC contribution to the research in scheduling algorithms for EPON
    corecore