235 research outputs found

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems

    Transmit-power control for cognitive radio networks: Challenges, requirements and options

    Get PDF
    A critical design challenge for cognitive radio networks is to establish a balance between transmit power and interference. In recent years, several approaches for regulating the transmit power of secondary users in cognitive radio networks have been proposed. This report explores the challenges and requirements of power control in cognitive radio networks. The report details two algorithms that have attracted research attention, namely the iterative water-filling algorithm and the no-regret learning algorithm. The two algorithms are compared by considering their application to a simple model, given the same conditions and assumptions. Furthermore, an adaptive scheme is introduced. The scheme incorporates both algorithms into the design of the cognitive engine, which is the functional unit responsible for power control. The conceptual architecture of the cognitive engine is presented. Simulation results for the iterative water-filling algorithm and the no-regret learning algorithm are presented. The number of iterations it takes for the algorithms to attain equilibrium are compared and used as a basis to establish the operational procedures of the hybrid-adaptive scheme. The operational procedures of the scheme are illustrated with a test application scenario. Several application scenarios are further presented to show how secondary users in cognitive radio networks can adaptively switch between the two operational strategies
    • …
    corecore