5,233 research outputs found

    Distributed Backlog-Aware D2D Communication for Heterogeneous IIoT Applications

    Full text link
    Delay and Age-of-Information (AoI) are two crucial performance metrics for emerging time-sensitive applications in Industrial Internet of Things (IIoT). In order to achieve optimal performance, studying the inherent interplay between these two parameters in non-trivial task. In this work, we consider a Device-to-Device (D2D)-based heterogeneous IIoT network that supports two types of traffic flows, namely AoI-orientated. First, we introduce a distributed backlog-aware random access protocol that allows the AoI-orientated nodes to opportunistically access the channel based on the queue occupancy of the delay-oriented node. Then, we develop an analytical framework to evaluate the average delay and the average AoI, and formulate an optimization problem to minimize the AoI under a given delay constraint. Finally, we provide numerical results to demonstrate the impact of different network parameters on the performance in terms of the average delay and the average AoI. We also give the numerical solutions of the optimal parameters that minimize the AoI subject to a delay constraint

    Delay Performance and Mixing Times in Random-Access Networks

    Get PDF
    We explore the achievable delay performance in wireless random-access networks. While relatively simple and inherently distributed in nature, suitably designed queue-based random-access schemes provide the striking capability to match the optimal throughput performance of centralized scheduling mechanisms in a wide range of scenarios. The specific type of activation rules for which throughput optimality has been established, may however yield excessive queues and delays. Motivated by that issue, we examine whether the poor delay performance is inherent to the basic operation of these schemes, or caused by the specific kind of activation rules. We derive delay lower bounds for queue-based activation rules, which offer fundamental insight in the cause of the excessive delays. For fixed activation rates we obtain lower bounds indicating that delays and mixing times can grow dramatically with the load in certain topologies as well
    • …
    corecore