1,336 research outputs found

    Capacity of wireless erasure networks

    Get PDF
    In this paper, a special class of wireless networks, called wireless erasure networks, is considered. In these networks, each node is connected to a set of nodes by possibly correlated erasure channels. The network model incorporates the broadcast nature of the wireless environment by requiring each node to send the same signal on all outgoing channels. However, we assume there is no interference in reception. Such models are therefore appropriate for wireless networks where all information transmission is packetized and where some mechanism for interference avoidance is already built in. This paper looks at multicast problems over these networks. The capacity under the assumption that erasure locations on all the links of the network are provided to the destinations is obtained. It turns out that the capacity region has a nice max-flow min-cut interpretation. The definition of cut-capacity in these networks incorporates the broadcast property of the wireless medium. It is further shown that linear coding at nodes in the network suffices to achieve the capacity region. Finally, the performance of different coding schemes in these networks when no side information is available to the destinations is analyzed

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    Effective Delay Control in Online Network Coding

    Full text link
    Motivated by streaming applications with stringent delay constraints, we consider the design of online network coding algorithms with timely delivery guarantees. Assuming that the sender is providing the same data to multiple receivers over independent packet erasure channels, we focus on the case of perfect feedback and heterogeneous erasure probabilities. Based on a general analytical framework for evaluating the decoding delay, we show that existing ARQ schemes fail to ensure that receivers with weak channels are able to recover from packet losses within reasonable time. To overcome this problem, we re-define the encoding rules in order to break the chains of linear combinations that cannot be decoded after one of the packets is lost. Our results show that sending uncoded packets at key times ensures that all the receivers are able to meet specific delay requirements with very high probability.Comment: 9 pages, IEEE Infocom 200
    • …
    corecore