1,506 research outputs found

    Stability Analysis of Integral Delay Systems with Multiple Delays

    Full text link
    This note is concerned with stability analysis of integral delay systems with multiple delays. To study this problem, the well-known Jensen inequality is generalized to the case of multiple terms by introducing an individual slack weighting matrix for each term, which can be optimized to reduce the conservatism. With the help of the multiple Jensen inequalities and by developing a novel linearizing technique, two novel Lyapunov functional based approaches are established to obtain sufficient stability conditions expressed by linear matrix inequalities (LMIs). It is shown that these new conditions are always less conservative than the existing ones. Moreover, by the positive operator theory, a single LMI based condition and a spectral radius based condition are obtained based on an existing sufficient stability condition expressed by coupled LMIs. A numerical example illustrates the effectiveness of the proposed approaches.Comment: 14 page

    Predictive scheme for observer-based control of LTI systems with unknown disturbances

    Get PDF
    International audienceIn this work, it is shown that the results introduced in [1], that hold for full state measurement, can be extended to partial state measurement. In particular, it is proven that the combination of an observer with the new predictive scheme of [1] leads to a better disturbance attenuation than using the same observer with the standard predictive scheme. Finally, some simulations illustrate the results for constant and time-varying disturbances

    A weighted distributed predictor-feedback control synthesis for interconnected time delay systems

    Full text link
    [EN] The paper investigates the control design of interconnected time delay systems by means of distributed predictor-feedback delay compensation approaches and event-triggered mechanism. The idea behind delay compensation is to counteract the negative effects of delays in the control-loop by feeding back future predictions of the system state. Nevertheless, an exact prediction of the overall system state vector cannot be obtained providing that each system has only knowledge of their local data regarding the system model and state variables. Consequently, predictor-feedback delay compensation may lose effectiveness if the coupling between subsystems is sufficiently strong. To circumvent this drawback, the proposed distributed predictor-feedback control incorporates extra degree of freedom for control synthesis by introducing new weighting factors for each local prediction term. The design of the weighting factors is addressed, together with the event-triggered parameters, by an algorithm based on Linear Matrix Inequalities (LMI) and the Cone Complementarity Linearization (CCL). Simulation results are provided to show the achieved improvements and validate the effectiveness of the proposed method, even in the case that other control strategies fail to stabilize the closed-loop system.This work was supported by projects PGC2018-098719-B-I00 (MCIU/AEI/FEDER, UE), Group DGA T45-17R and Fundacion Universitaria Antonio Gargallo (Project 2018/B004).González Sorribes, A. (2021). A weighted distributed predictor-feedback control synthesis for interconnected time delay systems. Information Sciences. 543(8):367-381. https://doi.org/10.1016/j.ins.2020.07.011S367381543

    Robust control strategies for unstable systems with input/output delays

    Full text link
    Los sistemas con retardo temporal aparecen con frecuencia en el ámbito de la ingeniería, por ejemplo en transmisiones hidráulicas o mecánicas, procesos metalúrgicos o sistemas de control en red. Los retardos temporales han despertado el interés de los investigadores en el ámbito del control desde finales de los años 50. Se ha desarrollado una amplia gama de herramientas para el análisis de su estabilidad y prestaciones, especialmente durante las dos últimas décadas. Esta tesis se centra en la estabilización de sistemas afectados por retardos temporales en la actuación y/o la medida. Concretamente, las contribuciones que aquí se incluyen tienen por objetivo mejorar las prestaciones de los controladores existentes en presencia de perturbaciones. Los retardos temporales degradan, inevitablemente, el desempeño de un bucle de control. No es de extrañar que el rechazo de perturbaciones haya sido motivo de estudio desde que emergieron los primeros controladores predictivos para sistemas con retardo. Las estrategias presentadas en esta tesis se basan en la combinación de controladores predictivos y observadores de perturbaciones. Estos últimos han sido aplicados con éxito para mejorar el rechazo de perturbaciones de controladores convencionales. Sin embargo, la aplicación de esta metodología a sistemas con retardo es poco frecuente en la literatura, la cual se investiga exhaustivamente en esta tesis. Otro inconveniente de los controladores predictivos está relacionado con su implementación, que puede llevar a la inestabilidad si no se realiza cuidadosamente. Este fenómeno está relacionado con el hecho de que las leyes de control predictivas se expresan mediante una ecuación integral. En esta tesis se presenta una estructura de control alternativa que evita este problema, la cual utiliza un observador de dimensión infinita, gobernado por una ecuación en derivadas parciales de tipo hiperbólico.Time-delay systems are ubiquitous in many engineering applications, such as mechanical or fluid transmissions, metallurgical processes or networked control systems. Time-delay systems have attracted the interest of control researchers since the late 50's. A wide variety of tools for stability and performance analysis has been developed, specially over the past two decades. This thesis is focused on the problem of stabilizing systems that are affected by delays on the actuator and/or sensing paths. More specifically, the contributions herein reported aim at improving the performance of existing controllers in the presence of external disturbances. Time delays unavoidably degrade the control loop performance. Disturbance rejection has been a matter of concern since the first predictive controllers for time-delay systems emerged. The key idea of the strategies presented in this thesis is the combination of predictive controllers and disturbance observers. The latter have been successfully applied to improve the disturbance rejection capabilities of conventional controllers. However, the application of this methodology to time-delay systems is rarely found in the literature. This combination is extensively investigated in this thesis. Another handicap of predictive controllers has to do with their implementation, which can induce instability if not done carefully. This issue is related to the fact that predictive control laws take the form of integral equations. An alternative control structure that avoids this problem is also reported in this thesis, which employs an infinite-dimensional observer, governed by a hyperbolic partial differential equation.Sanz Díaz, R. (2018). Robust control strategies for unstable systems with input/output delays [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/111830TESI

    Sequential predictors under time-varying feedback and measurement delays and sampling

    Get PDF
    We build sequential predictors for time-varying linear systems with time-varying input delays, outputs, sampling in the control, and time-varying measurement delays. We prove global exponential stability and robustness properties. We allow the sup norm of the input delay to be arbitrarily large and aperiodic sampling. We use a new set of dynamical extensions that contain output measurements, and whose advantages over existing methods include their lack of distributed terms

    Backstepping and Sequential Predictors for Control Systems

    Get PDF
    We provide new methods in mathematical control theory for two significant classes of control systems with time delays, based on backstepping and sequential prediction. Our bounded backstepping results ensure global asymptotic stability for partially linear systems with an arbitrarily large number of integrators. We also build sequential predictors for time-varying linear systems with time-varying delays in the control, sampling in the control, and time-varying measurement delays. Our bounded backstepping results are novel because of their use of converging-input-converging-state conditions, which make it possible to solve feedback stabilization problems under input delays and under boundedness conditions on the feedback control. Our sequential predictors work is novel in its ability to cover time-varying measurement delays and sampling which were beyond the scope of existing sequential predictor methods for time-varying linear systems, and in the fact that the feedback controls that we obtain from our sequential predictors do not contain any distributed terms

    STABILITY AND PERFORMANCE OF NETWORKED CONTROL SYSTEMS

    Get PDF
    Network control systems (NCSs), as one of the most active research areas, are arousing comprehensive concerns along with the rapid development of network. This dissertation mainly discusses the stability and performance of NCSs into the following two parts. In the first part, a new approach is proposed to reduce the data transmitted in networked control systems (NCSs) via model reduction method. Up to our best knowledge, we are the first to propose this new approach in the scientific and engineering society. The "unimportant" information of system states vector is truncated by balanced truncation method (BTM) before sending to the networked controller via network based on the balance property of the remote controlled plant controllability and observability. Then, the exponential stability condition of the truncated NCSs is derived via linear matrix inequality (LMI) forms. This method of data truncation can usually reduce the time delay and further improve the performance of the NCSs. In addition, all the above results are extended to the switched NCSs. The second part presents a new robust sliding mode control (SMC) method for general uncertain time-varying delay stochastic systems with structural uncertainties and the Brownian noise (Wiener process). The key features of the proposed method are to apply singular value decomposition (SVD) to all structural uncertainties, to introduce adjustable parameters for control design along with the SMC method, and new Lyapunov-type functional. Then, a less-conservative condition for robust stability and a new robust controller for the general uncertain stochastic systems are derived via linear matrix inequality (LMI) forms. The system states are able to reach the SMC switching surface as guaranteed in probability 1 by the proposed control rule. Furthermore, the novel Lyapunov-type functional for the uncertain stochastic systems is used to design a new robust control for the general case where the derivative of time-varying delay can be any bounded value (e.g., greater than one). It is theoretically proved that the conservatism of the proposed method is less than the previous methods. All theoretical proofs are presented in the dissertation. The simulations validate the correctness of the theoretical results and have better performance than the existing results
    corecore