11 research outputs found

    Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays

    Get PDF
    Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, the problem of stochastic synchronization analysis is investigated for a new array of coupled discrete-time stochastic complex networks with randomly occurred nonlinearities (RONs) and time delays. The discrete-time complex networks under consideration are subject to: (1) stochastic nonlinearities that occur according to the Bernoulli distributed white noise sequences; (2) stochastic disturbances that enter the coupling term, the delayed coupling term as well as the overall network; and (3) time delays that include both the discrete and distributed ones. Note that the newly introduced RONs and the multiple stochastic disturbances can better reflect the dynamical behaviors of coupled complex networks whose information transmission process is affected by a noisy environment (e.g., Internet-based control systems). By constructing a novel Lyapunov-like matrix functional, the idea of delay fractioning is applied to deal with the addressed synchronization analysis problem. By employing a combination of the linear matrix inequality (LMI) techniques, the free-weighting matrix method and stochastic analysis theories, several delay-dependent sufficient conditions are obtained which ensure the asymptotic synchronization in the mean square sense for the discrete-time stochastic complex networks with time delays. The criteria derived are characterized in terms of LMIs whose solution can be solved by utilizing the standard numerical software. A simulation example is presented to show the effectiveness and applicability of the proposed results

    A new criterion of delay-dependent asymptotic stability for Hopfield neural networks with time delay

    Get PDF
    In this brief, the problem of global asymptotic stability for delayed Hopfield neural networks (HNNs) is investigated. A new criterion of asymptotic stability is derived by introducing a new kind of Lyapunov-Krasovskii functional and is formulated in terms of a linear matrix inequality (LMI), which can be readily solved via standard software. This new criterion based on a delay fractioning approach proves to be much less conservative and the conservatism could be notably reduced by thinning the delay fractioning. An example is provided to show the effectiveness and the advantage of the proposed result. © 2008 IEEE.published_or_final_versio

    Distributed state estimation in sensor networks with randomly occurring nonlinearities subject to time delays

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the links below - Copyright @ 2012 ACM.This article is concerned with a new distributed state estimation problem for a class of dynamical systems in sensor networks. The target plant is described by a set of differential equations disturbed by a Brownian motion and randomly occurring nonlinearities (RONs) subject to time delays. The RONs are investigated here to reflect network-induced randomly occurring regulation of the delayed states on the current ones. Through available measurement output transmitted from the sensors, a distributed state estimator is designed to estimate the states of the target system, where each sensor can communicate with the neighboring sensors according to the given topology by means of a directed graph. The state estimation is carried out in a distributed way and is therefore applicable to online application. By resorting to the Lyapunov functional combined with stochastic analysis techniques, several delay-dependent criteria are established that not only ensure the estimation error to be globally asymptotically stable in the mean square, but also guarantee the existence of the desired estimator gains that can then be explicitly expressed when certain matrix inequalities are solved. A numerical example is given to verify the designed distributed state estimators.This work was supported in part by the National Natural Science Foundation of China under Grants 61028008, 60804028 and 61174136, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Stability and synchronization of discrete-time neural networks with switching parameters and time-varying delays

    Get PDF
    published_or_final_versio

    Variance-constrained multiobjective control and filtering for nonlinear stochastic systems: A survey

    Get PDF
    The multiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance control theory, which serves as a practical method for multi-objective control design as well as a foundation for linear system theory, is reviewed comprehensively. The multiple design requirements frequently applied in engineering practice for the use of evaluating system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular, as a special case for the multi-objective design problems, the mixed H 2 / H ∞ control and filtering problems are reviewed in great detail. Subsequently, some latest results on the variance-constrained multi-objective control and filtering problems for the nonlinear stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out

    Synchronization and Pinning Control in Complex Networks with Interval Time-Varying Delay

    Get PDF
    The problems on synchronization and pinning control for complex dynamical networks with interval time-varying delay are investigated and two less conservative criteria are established based on reciprocal convex technique. Pinning control strategies are designed to make the complex networks synchronized. Moreover, the problem of designing controllers can be converted into solving a series of NMIs (nonlinear matrix inequalities) and LMIs (linear matrix inequalities), which reduces the computation complexity when comparing with those present results. Finally, numerical simulations can verify the effectiveness of the derived methods

    Applied Ecology and Environmental Research 2018

    Get PDF
    corecore