31,164 research outputs found

    Fault localization on power cables using time delay estimation of partial discharge signals

    Get PDF
    Precise localization of partial discharge (PD) sources on power cables is vital to prevent power line failures that can lead to significant economic losses for electrical suppliers. This study proposes four methods to estimate the time delay of PD signals under electromagnetic interference, including white Gaussian noise (WGN) and discrete sinusoidal interference (DSI), using denoised PD signals with signal-to-noise ratios ranging from 10.6 to -7.02 dB. The maximum peak detection (MPD) and cross-correlation (CC) approaches, as well as two new techniques, interpolation cross-correlation (ICC) and envelope cross-correlation (ECC), are evaluated for their effectiveness in PD source localization. The researchers employ the time difference of arrival (TDoA) algorithm to compute PD location using the double-end PD location algorithm, where the PD location precision serves as an indicator of the accuracy of the time delay estimation methods. The study concludes that CC and ICC are the most suitable methods for estimating the time delay of PD signals in the PD location algorithm, as they exhibit the lowest error rates. These results suggest that CC and ICC can be used effectively for precise PD source localization under electromagnetic interference on power cables

    Persistent Homology of Delay Embeddings

    Full text link
    The objective of this study is to detect and quantify the periodic behavior of the signals using topological methods. We propose to use delay-coordinate embeddings as a tool to measure the periodicity of signals. Moreover, we use persistent homology for analyzing the structure of point clouds of delay-coordinate embeddings. A method for finding the appropriate value of delay is proposed based on the autocorrelation function of the signals. We apply this topological approach to wheeze signals by introducing a model based on their harmonic characteristics. Wheeze detection is performed using the first Betti numbers of a few number of landmarks chosen from embeddings of the signals.Comment: 16 pages, 8 figure

    Sensitivity and parameter-estimation precision for alternate LISA configurations

    Get PDF
    We describe a simple framework to assess the LISA scientific performance (more specifically, its sensitivity and expected parameter-estimation precision for prescribed gravitational-wave signals) under the assumption of failure of one or two inter-spacecraft laser measurements (links) and of one to four intra-spacecraft laser measurements. We apply the framework to the simple case of measuring the LISA sensitivity to monochromatic circular binaries, and the LISA parameter-estimation precision for the gravitational-wave polarization angle of these systems. Compared to the six-link baseline configuration, the five-link case is characterized by a small loss in signal-to-noise ratio (SNR) in the high-frequency section of the LISA band; the four-link case shows a reduction by a factor of sqrt(2) at low frequencies, and by up to ~2 at high frequencies. The uncertainty in the estimate of polarization, as computed in the Fisher-matrix formalism, also worsens when moving from six to five, and then to four links: this can be explained by the reduced SNR available in those configurations (except for observations shorter than three months, where five and six links do better than four even with the same SNR). In addition, we prove (for generic signals) that the SNR and Fisher matrix are invariant with respect to the choice of a basis of TDI observables; rather, they depend only on which inter-spacecraft and intra-spacecraft measurements are available.Comment: 17 pages, 4 EPS figures, IOP style, corrected CQG versio

    Interpolated-DFT-Based Fast and Accurate Amplitude and Phase Estimation for the Control of Power

    Full text link
    The quality of energy produced in renewable energy systems has to be at the high level specified by respective standards and directives. The estimation accuracy of grid signal parameters is one of the most important factors affecting this quality. This paper presents a method for a very fast and accurate amplitude and phase grid signal estimation using the Fast Fourier Transform procedure and maximum decay sidelobes windows. The most important features of the method are the elimination of the impact associated with the conjugate's component on the results and the straightforward implementation. Moreover, the measurement time is very short - even far less than one period of the grid signal. The influence of harmonics on the results is reduced by using a bandpass prefilter. Even using a 40 dB FIR prefilter for the grid signal with THD = 38%, SNR = 53 dB and a 20-30% slow decay exponential drift the maximum error of the amplitude estimation is approximately 1% and approximately 0.085 rad of the phase estimation in a real-time DSP system for 512 samples. The errors are smaller by several orders of magnitude for more accurate prefilters.Comment: in Metrology and Measurement Systems, 201

    Improved Transients in Multiple Frequencies Estimation via Dynamic Regressor Extension and Mixing

    Full text link
    A problem of performance enhancement for multiple frequencies estimation is studied. First, we consider a basic gradient-based estimation approach with global exponential convergence. Next, we apply dynamic regressor extension and mixing technique to improve transient performance of the basic approach and ensure non-strict monotonicity of estimation errors. Simulation results illustrate benefits of the proposed solution.Comment: This paper is submitted for the ALCOSP 2016 conferenc

    Theoretical limits for estimation of periodic movements in pulse-based UWB systems

    Get PDF
    Cataloged from PDF version of article.In this paper, Cramer-Rao lower bounds (CRLBs) for estimation of signal parameters related to periodically moving objects in pulse-based ultra-wideband (UWB) systems are presented. The results also apply to estimation of vital parameters, such as respiration rate, using UWB signals. In addition to obtaining the CRLBs, suboptimal estimation algorithms are also presented. First, a single-path channel with additive white Gaussian noise is considered, and closed-form CRLB expressions are obtained for sinusoidal object movements. Also, a two-step suboptimal algorithm is proposed, which is based on time delay estimation via matched filtering followed by least-squares estimation, and its asymptotic optimality property is shown in the limit of certain system parameters. Then, a multipath environment is considered, and exact and approximate CRLB expressions are derived. Moreover, suboptimal schemes for parameter estimation are studied. Simulation studies are performed for the estimation of respiration rates in order to evaluate the lower bounds and performance of the suboptimal algorithms for realistic system parameters

    Optimal control of ankle joint moment: Toward unsupported standing in paraplegia

    Get PDF
    This paper considers part of the problem of how to provide unsupported standing for paraplegics by feedback control. In this work our overall objective is to stabilize the subject by stimulation only of his ankle joints while the other joints are braced, Here, we investigate the problem of ankle joint moment control. The ankle plantarflexion muscles are first identified with pseudorandom binary sequence (PRBS) signals, periodic sinusoidal signals, and twitches. The muscle is modeled in Hammerstein form as a static recruitment nonlinearity followed by a linear transfer function. A linear-quadratic-Gaussian (LQG)-optimal controller design procedure for ankle joint moment was proposed based on the polynomial equation formulation, The approach was verified by experiments in the special Wobbler apparatus with a neurologically intact subject, and these experimental results are reported. The controller structure is formulated in such a way that there are only two scalar design parameters, each of which has a clear physical interpretation. This facilitates fast controller synthesis and tuning in the laboratory environment. Experimental results show the effects of the controller tuning parameters: the control weighting and the observer response time, which determine closed-loop properties. Using these two parameters the tradeoff between disturbance rejection and measurement noise sensitivity can be straightforwardly balanced while maintaining a desired speed of tracking. The experimentally measured reference tracking, disturbance rejection, and noise sensitivity are good and agree with theoretical expectations

    Universal direct tuner for loop control in industry

    Get PDF
    This paper introduces a direct universal (automatic) tuner for basic loop control in industrial applications. The direct feature refers to the fact that a first-hand model, such as a step response first-order plus dead time approximation, is not required. Instead, a point in the frequency domain and the corresponding slope of the loop frequency response is identified by single test suitable for industrial applications. The proposed method has been shown to overcome pitfalls found in other (automatic) tuning methods and has been validated in a wide range of common and exotic processes in simulation and experimental conditions. The method is very robust to noise, an important feature for real life industrial applications. Comparison is performed with other well-known methods, such as approximate M-constrained integral gain optimization (AMIGO) and Skogestad internal model controller (SIMC), which are indirect methods, i.e., they are based on a first-hand approximation of step response data. The results indicate great similarity between the results, whereas the direct method has the advantage of skipping this intermediate step of identification. The control structure is the most commonly used in industry, i.e., proportional-integral-derivative (PID) type. As the derivative action is often not used in industry due to its difficult choice, in the proposed method, we use a direct relation between the integral and derivative gains. This enables the user to have in the tuning structure the advantages of the derivative action, therefore much improving the potential of good performance in real life control applications
    corecore