177 research outputs found

    Nonlinear analysis of dynamical complex networks

    Get PDF
    Copyright © 2013 Zidong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Complex networks are composed of a large number of highly interconnected dynamical units and therefore exhibit very complicated dynamics. Examples of such complex networks include the Internet, that is, a network of routers or domains, the World Wide Web (WWW), that is, a network of websites, the brain, that is, a network of neurons, and an organization, that is, a network of people. Since the introduction of the small-world network principle, a great deal of research has been focused on the dependence of the asymptotic behavior of interconnected oscillatory agents on the structural properties of complex networks. It has been found out that the general structure of the interaction network may play a crucial role in the emergence of synchronization phenomena in various fields such as physics, technology, and the life sciences

    Invariant Measures for Dissipative Dynamical Systems: Abstract Results and Applications

    Full text link
    In this work we study certain invariant measures that can be associated to the time averaged observation of a broad class of dissipative semigroups via the notion of a generalized Banach limit. Consider an arbitrary complete separable metric space XX which is acted on by any continuous semigroup {S(t)}t≥0\{S(t)\}_{t \geq 0}. Suppose that §(t)}t≥0\S(t)\}_{t \geq 0} possesses a global attractor A\mathcal{A}. We show that, for any generalized Banach limit LIMT→∞\underset{T \rightarrow \infty}{\rm{LIM}} and any distribution of initial conditions m0\mathfrak{m}_0, that there exists an invariant probability measure m\mathfrak{m}, whose support is contained in A\mathcal{A}, such that ∫Xϕ(x)dm(x)=LIMT→∞1T∫0T∫Xϕ(S(t)x)dm0(x)dt, \int_{X} \phi(x) d\mathfrak{m} (x) = \underset{T\to \infty}{\rm{LIM}} \frac{1}{T}\int_0^T \int_X \phi(S(t) x) d \mathfrak{m}_0(x) d t, for all observables ϕ\phi living in a suitable function space of continuous mappings on XX. This work is based on a functional analytic framework simplifying and generalizing previous works in this direction. In particular our results rely on the novel use of a general but elementary topological observation, valid in any metric space, which concerns the growth of continuous functions in the neighborhood of compact sets. In the case when {S(t)}t≥0\{S(t)\}_{t \geq 0} does not possess a compact absorbing set, this lemma allows us to sidestep the use of weak compactness arguments which require the imposition of cumbersome weak continuity conditions and limits the phase space XX to the case of a reflexive Banach space. Two examples of concrete dynamical systems where the semigroup is known to be non-compact are examined in detail.Comment: To appear in Communications in Mathematical Physic

    Dissipativity analysis of stochastic fuzzy neural networks with randomly occurring uncertainties using delay dividing approach

    Get PDF
    This paper focuses on the problem of delay-dependent robust dissipativity analysis for a class of stochastic fuzzy neural networks with time-varying delay. The randomly occurring uncertainties under consideration are assumed to follow certain mutually uncorrelated Bernoulli-distributed white noise sequences. Based on the Itô's differential formula, Lyapunov stability theory, and linear matrix inequalities techniques, several novel sufficient conditions are derived using delay partitioning approach to ensure the dissipativity of neural networks with or without time-varying parametric uncertainties. It is shown, by comparing with existing approaches, that the delay-partitioning projection approach can largely reduce the conservatism of the stability results. Numerical examples are constructed to show the effectiveness of the theoretical results

    Dissipative Stabilization of Linear Systems with Time-Varying General Distributed Delays (Complete Version)

    Full text link
    New methods are developed for the stabilization of a linear system with general time-varying distributed delays existing at the system's states, inputs and outputs. In contrast to most existing literature where the function of time-varying delay is continuous and bounded, we assume it to be bounded and measurable. Furthermore, the distributed delay kernels can be any square-integrable function over a bounded interval, where the kernels are handled directly by using a decomposition scenario without using approximations. By constructing a Krasovski\u{i} functional via the application of a novel integral inequality, sufficient conditions for the existence of a dissipative state feedback controller are derived in terms of matrix inequalities without utilizing the existing reciprocally convex combination lemmas. The proposed synthesis (stability) conditions, which take dissipativity into account, can be either solved directly by a standard numerical solver of semidefinite programming if they are convex, or reshaped into linear matrix inequalities, or solved via a proposed iterative algorithm. To the best of our knowledge, no existing methods can handle the synthesis problem investigated in this paper. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed methodologies.Comment: Accepted by Automatic

    Finite-time Stability, Dissipativity and Passivity Analysis of Discrete-time Neural Networks Time-varying Delays

    Get PDF
    The neural network time-varying delay was described as the dynamic properties of a neural cell, including neural functional and neural delay differential equations. The differential expression explains the derivative term of current and past state. The objective of this paper obtained the neural network time-varying delay. A delay-dependent condition is provided to ensure the considered discrete-time neural networks with time-varying delays to be finite-time stability, dissipativity, and passivity. This paper using a new Lyapunov-Krasovskii functional as well as the free-weighting matrix approach and a linear matrix inequality analysis (LMI) technique constructing to a novel sufficient criterion on finite-time stability, dissipativity, and passivity of the discrete-time neural networks with time-varying delays for improving. We propose sufficient conditions for discrete-time neural networks with time-varying delays. An effective LMI approach derives by base the appropriate type of Lyapunov functional. Finally, we present the effectiveness of novel criteria of finite-time stability, dissipativity, and passivity condition of discrete-time neural networks with time-varying delays in the form of linear matrix inequality (LMI)

    Sufficient Stability Conditions for Time-varying Networks of Telegrapher's Equations or Difference Delay Equations

    Get PDF
    We give a sufficient condition for exponential stability of a network of lossless telegrapher's equations, coupled by linear time-varying boundary conditions. The sufficient conditions is in terms of dissipativity of the couplings, which is natural for instance in the context of microwave circuits. Exponential stability is with respect to any LpL^p-norm, 1≤p≤∞1\leq p\leq\infty. This also yields a sufficient condition for exponential stability to a special class of linear time-varying difference delay systems which is quite explicit and tractable. One ingredient of the proof is that LpL^p exponential stability for such difference delay systems is independent of pp, thereby reproving in a simpler way some results from [3].Comment: To be published in SIAM Journal on Mathematical Analysis, most probably 202

    Further analysis of stability of uncertain neural networks with multiple time delays

    Get PDF
    This paper studies the robust stability of uncertain neural networks with multiple time delays with respect to the class of nondecreasing activation functions. By using the Lyapunov functional and homeomorphism mapping theorems, we derive a new delay-independent sufficient condition the existence, uniqueness, and global asymptotic stability of the equilibrium point for delayed neural networks with uncertain network parameters. The condition obtained for the robust stability establishes a matrix-norm relationship between the network parameters of the neural system, and therefore it can easily be verified. We also present some constructive numerical examples to compare the proposed result with results in the previously published corresponding literature. These comparative examples show that our new condition can be considered as an alternative result to the previous corresponding literature results as it defines a new set of network parameters ensuring the robust stability of delayed neural networks.Publisher's Versio

    Dissipative State and Output Estimation of Systems with General Delays

    Full text link
    Dissipative state and output estimation for continuous time-delay systems pose a significant challenge when an unlimited number of pointwise and general distributed delays (DDs) are concerned. We propose an effective solution to this open problem using the Krasovski\u{\i} functional (KF) framework in conjunction with a quadratic supply rate function, where both the plant and the estimator can accommodate an unlimited number of pointwise and general DDs. All DDs can contain an unlimited number of square-integrable kernel functions, which are treated by an equivalent decomposition-approximation scheme. This novel approach allows for the factorization or approximation of any kernel function without introducing conservatism, and facilitates the construction of a complete-type KF with integral kernels that can encompass any number of differentiable (weak derivatives) and linearly independent functions. Our proposed solution is expressed as convex semidefinite programs presented in two theorems along with an iterative algorithm, which eliminates the need of nonlinear solvers. We demonstrate the effectiveness of our method using two challenging numerical experiments, including a system stabilized by a non-smooth controller.Comment: submitting to TA
    • …
    corecore