3,086 research outputs found

    Classification of Smart Home Applications’ Requirements for the MAC Layer

    Get PDF
    Abstract—Smart homes and Wireless Home Automation Networks (WHAN) face several challenges in terms of cost, scalability, reliability, delay, energy consumption and many others. Smart homes typically have huge number of communicating devices. Efficient management of network resources is a major challenge in such environments. This paper provides insights on how to improve the MAC layer in smart home networks to fulfil the requirements of the different smart home applications. It provides a classification of the different smart home applications and identifies the main requirements and challenges regarding the MAC layer in this environment. It also provides insights for MAC protocols designers by highlighting the main issues in designing MAC schemes for smart home environment. Based on the analysis, the paper highlights adaptability as the most critical and challenging feature for smart home MAC protocols

    Integrating Low Voltage Distribution Systems to Distribution Automation

    Get PDF
    The aim of this thesis is to define and study the key elements and the main characteris-tics of the integration of the low voltage (LV) distribution systems to distribution auto-mation (DA). The key elements are defined by studying the development of essential systems in LV distribution networks as well as by studying the development of the net-works by way of evolution phases. The key elements and the main characteristics of the integration to DA are illustrated by a certain model of a LV distribution network under its development. For a start DA is reviewed by generally used functions and by technologies. The review includes the data and the information systems and in addition the communication net-works are studied generally. Thereafter the main elements of LV distribution networks are presented and their evolution visions are introduced. The main elements comprises of the distribution network, distributed generation, smart energy metering, electric vehicles and energy storages. The approach to the integration is the evolution of LV distribution networks, so four main evolution phases are introduced; traditional, boom of distributed generation, mi-crogrid and intelligent microgrid. The evolution phases bases on general research publi-cations and visions of Smart Grids. Management architectures for the networks are pre-sented. Also requirements for communication are evaluated by studying the number of nodes, capacity requirements for transferred data types and fault and event frequencies. In order to define a proposal for integrating LV distribution networks to DA, the man-agement architectures and the studied requirements are compared to produce functions for DA. As a result, the proposal is presented based on the studied architectures and re-quirements. In addition considerable issues are introduced relating to the functions in devices or sub-systems, which are needed for DA applications. This thesis indicates the need for further studies, such as: Which are the desired DA functions to be extended to LV distribution networks? Which device or system should offer the desired functions? How well the potential protocols using some media type serves the functions?fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Assessment of novel distributed control techniques to address network constraints with demand side management

    Get PDF
    The development of sustainable generation, a reliable electricity supply and affordable tariffs are the primary requirements to address the uncertainties in different future energy scenarios. Due to the predicted increase in Distributed Generation (DG) and load profile changes in future scenarios, there are significant operational and planning challenges facing netwrok operators. These changes in the power system distribution network require a new Active Network Management (ANM) control system to manage distribution constraint issues such as thermal rating, voltage, and fault levels. The future smart grid focuses on harnessing the control potential from demand side via bidirectional power flow, transparent information communication, and contractual customer participation. Demand Side Management (DSM) is considered as one of the effective solutions to defer network capacity reinforcement, increase energy efficiency, facilitate renewable access, and implement low carbon energy strategy. From the Distribution Network Operator's (DNO) perspective, the control opportunity from Demand Response (DR) and Decentralized Energy Resource (DER) contributes on capacity investment reduction, energy efficiency, and enable low carbon technologies. This thesis develops a new decentralized control system for dealing effectively with the constraint issues in the Medium Voltage (MV) distribution network. In the decentralized control system, two novel control approaches are proposed to autonomously relieve the network thermal constraint via DNO's direct control of the real power in network components during the operation period. The first approach, Demand Response for Power Flow Management (DR-PFM), implements the DSM peak clipping control of Active Demand (AD), whilst the second approach, Hybrid Control for Power Flow Management (HC-PFM), implements the hybrid control of both AD and DER. The novelty of these two new control algorithms consists in the application of a Constraint Satisfaction Problem (CSP) based programming model on decision making of the real power curtailment to relieve the network thermal overload. In the Constraint Programming (CP) model, three constraints are identified: a preference constraint, and a network constraint. The control approaches effectively solve the above constraint problem in the CSP model within 5 seconds' time response. The control performance is influenced by the pre-determined variable, domain and constraint settings. These novel control approaches take advantages on flexible control, fast response and demand participation enabling in the future smart grid.The development of sustainable generation, a reliable electricity supply and affordable tariffs are the primary requirements to address the uncertainties in different future energy scenarios. Due to the predicted increase in Distributed Generation (DG) and load profile changes in future scenarios, there are significant operational and planning challenges facing netwrok operators. These changes in the power system distribution network require a new Active Network Management (ANM) control system to manage distribution constraint issues such as thermal rating, voltage, and fault levels. The future smart grid focuses on harnessing the control potential from demand side via bidirectional power flow, transparent information communication, and contractual customer participation. Demand Side Management (DSM) is considered as one of the effective solutions to defer network capacity reinforcement, increase energy efficiency, facilitate renewable access, and implement low carbon energy strategy. From the Distribution Network Operator's (DNO) perspective, the control opportunity from Demand Response (DR) and Decentralized Energy Resource (DER) contributes on capacity investment reduction, energy efficiency, and enable low carbon technologies. This thesis develops a new decentralized control system for dealing effectively with the constraint issues in the Medium Voltage (MV) distribution network. In the decentralized control system, two novel control approaches are proposed to autonomously relieve the network thermal constraint via DNO's direct control of the real power in network components during the operation period. The first approach, Demand Response for Power Flow Management (DR-PFM), implements the DSM peak clipping control of Active Demand (AD), whilst the second approach, Hybrid Control for Power Flow Management (HC-PFM), implements the hybrid control of both AD and DER. The novelty of these two new control algorithms consists in the application of a Constraint Satisfaction Problem (CSP) based programming model on decision making of the real power curtailment to relieve the network thermal overload. In the Constraint Programming (CP) model, three constraints are identified: a preference constraint, and a network constraint. The control approaches effectively solve the above constraint problem in the CSP model within 5 seconds' time response. The control performance is influenced by the pre-determined variable, domain and constraint settings. These novel control approaches take advantages on flexible control, fast response and demand participation enabling in the future smart grid

    Overlay networks for smart grids

    Get PDF

    A System Architecture for Software-Defined Industrial Internet of Things

    Full text link
    Wireless sensor networks have been a driving force of the Industrial Internet of Things (IIoT) advancement in the process control and manufacturing industry. The emergence of IIoT opens great potential for the ubiquitous field device connectivity and manageability with an integrated and standardized architecture from low-level device operations to high-level data-centric application interactions. This technological development requires software definability in the key architectural elements of IIoT, including wireless field devices, IIoT gateways, network infrastructure, and IIoT sensor cloud services. In this paper, a novel software-defined IIoT (SD-IIoT) is proposed in order to solve essential challenges in a holistic IIoT system, such as reliability, security, timeliness scalability, and quality of service (QoS). A new IIoT system architecture is proposed based on the latest networking technologies such as WirelessHART, WebSocket, IETF constrained application protocol (CoAP) and software-defined networking (SDN). A new scheme based on CoAP and SDN is proposed to solve the QoS issues. Computer experiments in a case study are implemented to show the effectiveness of the proposed system architecture.Comment: To be published by IEEE ICUWB-201

    μGIM - Microgrid intelligent management system based on a multi-agent approach and the active participation of end-users

    Get PDF
    [ES] Los sistemas de potencia y energía están cambiando su paradigma tradicional, de sistemas centralizados a sistemas descentralizados. La aparición de redes inteligentes permite la integración de recursos energéticos descentralizados y promueve la gestión inclusiva que involucra a los usuarios finales, impulsada por la gestión del lado de la demanda, la energía transactiva y la respuesta a la demanda. Garantizar la escalabilidad y la estabilidad del servicio proporcionado por la red, en este nuevo paradigma de redes inteligentes, es más difícil porque no hay una única sala de operaciones centralizada donde se tomen todas las decisiones. Para implementar con éxito redes inteligentes, es necesario combinar esfuerzos entre la ingeniería eléctrica y la ingeniería informática. La ingeniería eléctrica debe garantizar el correcto funcionamiento físico de las redes inteligentes y de sus componentes, estableciendo las bases para un adecuado monitoreo, control, gestión, y métodos de operación. La ingeniería informática desempeña un papel importante al proporcionar los modelos y herramientas computacionales adecuados para administrar y operar la red inteligente y sus partes constituyentes, representando adecuadamente a todos los diferentes actores involucrados. Estos modelos deben considerar los objetivos individuales y comunes de los actores que proporcionan las bases para garantizar interacciones competitivas y cooperativas capaces de satisfacer a los actores individuales, así como cumplir con los requisitos comunes con respecto a la sostenibilidad técnica, ambiental y económica del Sistema. La naturaleza distribuida de las redes inteligentes permite, incentiva y beneficia enormemente la participación activa de los usuarios finales, desde actores grandes hasta actores más pequeños, como los consumidores residenciales. Uno de los principales problemas en la planificación y operación de redes eléctricas es la variación de la demanda de energía, que a menudo se duplica más que durante las horas pico en comparación con la demanda fuera de pico. Tradicionalmente, esta variación dio como resultado la construcción de plantas de generación de energía y grandes inversiones en líneas de red y subestaciones. El uso masivo de fuentes de energía renovables implica mayor volatilidad en lo relativo a la generación, lo que hace que sea más difícil equilibrar el consumo y la generación. La participación de los actores de la red inteligente, habilitada por la energía transactiva y la respuesta a la demanda, puede proporcionar flexibilidad en desde el punto de vista de la demanda, facilitando la operación del sistema y haciendo frente a la creciente participación de las energías renovables. En el ámbito de las redes inteligentes, es posible construir y operar redes más pequeñas, llamadas microrredes. Esas son redes geográficamente limitadas con gestión y operación local. Pueden verse como áreas geográficas restringidas para las cuales la red eléctrica generalmente opera físicamente conectada a la red principal, pero también puede operar en modo isla, lo que proporciona independencia de la red principal. Esta investigación de doctorado, realizada bajo el Programa de Doctorado en Ingeniería Informática de la Universidad de Salamanca, aborda el estudio y el análisis de la gestión de microrredes, considerando la participación activa de los usuarios finales y la gestión energética de lascarga eléctrica y los recursos energéticos de los usuarios finales. En este trabajo de investigación se ha analizado el uso de conceptos de ingeniería informática, particularmente del campo de la inteligencia artificial, para apoyar la gestión de las microrredes, proponiendo un sistema de gestión inteligente de microrredes (μGIM) basado en un enfoque de múltiples agentes y en la participación activa de usuarios. Esta solución se compone de tres sistemas que combinan hardware y software: el emulador de virtual a realidad (V2R), el enchufe inteligente de conciencia ambiental de Internet de las cosas (EnAPlug), y la computadora de placa única para energía basada en el agente (S4E) para permitir la gestión del lado de la demanda y la energía transactiva. Estos sistemas fueron concebidos, desarrollados y probados para permitir la validación de metodologías de gestión de microrredes, es decir, para la participación de los usuarios finales y para la optimización inteligente de los recursos. Este documento presenta todos los principales modelos y resultados obtenidos durante esta investigación de doctorado, con respecto a análisis de vanguardia, concepción de sistemas, desarrollo de sistemas, resultados de experimentación y descubrimientos principales. Los sistemas se han evaluado en escenarios reales, desde laboratorios hasta sitios piloto. En total, se han publicado veinte artículos científicos, de los cuales nueve se han hecho en revistas especializadas. Esta investigación de doctorado realizó contribuciones a dos proyectos H2020 (DOMINOES y DREAM-GO), dos proyectos ITEA (M2MGrids y SPEAR), tres proyectos portugueses (SIMOCE, NetEffiCity y AVIGAE) y un proyecto con financiación en cascada H2020 (Eco-Rural -IoT)
    corecore