672 research outputs found

    Cyber-Agricultural Systems for Crop Breeding and Sustainable Production

    Get PDF
    The Cyber-Agricultural System (CAS) Represents an overarching Framework of Agriculture that Leverages Recent Advances in Ubiquitous Sensing, Artificial Intelligence, Smart Actuators, and Scalable Cyberinfrastructure (CI) in Both Breeding and Production Agriculture. We Discuss the Recent Progress and Perspective of the Three Fundamental Components of CAS – Sensing, Modeling, and Actuation – and the Emerging Concept of Agricultural Digital Twins (DTs). We Also Discuss How Scalable CI is Becoming a Key Enabler of Smart Agriculture. in This Review We Shed Light on the Significance of CAS in Revolutionizing Crop Breeding and Production by Enhancing Efficiency, Productivity, Sustainability, and Resilience to Changing Climate. Finally, We Identify Underexplored and Promising Future Directions for CAS Research and Development

    Embodied interaction with visualization and spatial navigation in time-sensitive scenarios

    Get PDF
    Paraphrasing the theory of embodied cognition, all aspects of our cognition are determined primarily by the contextual information and the means of physical interaction with data and information. In hybrid human-machine systems involving complex decision making, continuously maintaining a high level of attention while employing a deep understanding concerning the task performed as well as its context are essential. Utilizing embodied interaction to interact with machines has the potential to promote thinking and learning according to the theory of embodied cognition proposed by Lakoff. Additionally, the hybrid human-machine system utilizing natural and intuitive communication channels (e.g., gestures, speech, and body stances) should afford an array of cognitive benefits outstripping the more static forms of interaction (e.g., computer keyboard). This research proposes such a computational framework based on a Bayesian approach; this framework infers operator\u27s focus of attention based on the physical expressions of the operators. Specifically, this work aims to assess the effect of embodied interaction on attention during the solution of complex, time-sensitive, spatial navigational problems. Toward the goal of assessing the level of operator\u27s attention, we present a method linking the operator\u27s interaction utility, inference, and reasoning. The level of attention was inferred through networks coined Bayesian Attentional Networks (BANs). BANs are structures describing cause-effect relationships between operator\u27s attention, physical actions and decision-making. The proposed framework also generated a representative BAN, called the Consensus (Majority) Model (CMM); the CMM consists of an iteratively derived and agreed graph among candidate BANs obtained by experts and by the automatic learning process. Finally, the best combinations of interaction modalities and feedback were determined by the use of particular utility functions. This methodology was applied to a spatial navigational scenario; wherein, the operators interacted with dynamic images through a series of decision making processes. Real-world experiments were conducted to assess the framework\u27s ability to infer the operator\u27s levels of attention. Users were instructed to complete a series of spatial-navigational tasks using an assigned pairing of an interaction modality out of five categories (vision-based gesture, glove-based gesture, speech, feet, or body balance) and a feedback modality out of two (visual-based or auditory-based). Experimental results have confirmed that physical expressions are a determining factor in the quality of the solutions in a spatial navigational problem. Moreover, it was found that the combination of foot gestures with visual feedback resulted in the best task performance (p\u3c .001). Results have also shown that embodied interaction-based multimodal interface decreased execution errors that occurred in the cyber-physical scenarios (p \u3c .001). Therefore we conclude that appropriate use of interaction and feedback modalities allows the operators maintain their focus of attention, reduce errors, and enhance task performance in solving the decision making problems

    Activity Report: Automatic Control 2013

    Get PDF

    Towards the Advanced Data Processing for Medical Applications Using Task Offloading Strategy

    Get PDF
    Broad adoption of resource-constrained devices for medical use has additional limitations in terms of execution of delay-sensitive medical applications. As one of the solutions, new ways of computational offloading could be developed and integrated. The recently emerged Mobile Edge Computing (MEC) and Mobile Cloud Computing (MCC) paradigms attempt to address this problem by offloading tasks to a the resource-rich server. In the context of the availability of eHealth services for all patients, independently of the location, the implementation of MEC and MCC could help ensure a high availability of medical services. Remote medical examination, robotic surgery, and cardiac telemetry require efficient computing solutions. This work discusses three alternative computing models: local computing, MEC, and MCC. We have designed a Matlab-based tool to calculate and compare the response time and energy efficiency. We show that local computing demands 48 times more power than MEC/MCC with increasing packet workload. On the other hand, the throughput of MEC/MCC highly depends on the parameters of the communication channel. Finding an optimal trade-off between the response time and energy consumption is an important research question that could not be solved without investigating the system’s bottlenecks.acceptedVersionPeer reviewe

    Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Towards 6G

    Full text link
    The next wave of wireless technologies is proliferating in connecting things among themselves as well as to humans. In the era of the Internet of things (IoT), billions of sensors, machines, vehicles, drones, and robots will be connected, making the world around us smarter. The IoT will encompass devices that must wirelessly communicate a diverse set of data gathered from the environment for myriad new applications. The ultimate goal is to extract insights from this data and develop solutions that improve quality of life and generate new revenue. Providing large-scale, long-lasting, reliable, and near real-time connectivity is the major challenge in enabling a smart connected world. This paper provides a comprehensive survey on existing and emerging communication solutions for serving IoT applications in the context of cellular, wide-area, as well as non-terrestrial networks. Specifically, wireless technology enhancements for providing IoT access in fifth-generation (5G) and beyond cellular networks, and communication networks over the unlicensed spectrum are presented. Aligned with the main key performance indicators of 5G and beyond 5G networks, we investigate solutions and standards that enable energy efficiency, reliability, low latency, and scalability (connection density) of current and future IoT networks. The solutions include grant-free access and channel coding for short-packet communications, non-orthogonal multiple access, and on-device intelligence. Further, a vision of new paradigm shifts in communication networks in the 2030s is provided, and the integration of the associated new technologies like artificial intelligence, non-terrestrial networks, and new spectra is elaborated. Finally, future research directions toward beyond 5G IoT networks are pointed out.Comment: Submitted for review to IEEE CS&
    • …
    corecore