1,564 research outputs found

    Journal Staff

    Get PDF
    We investigate the performance of delay constrained data transmission over wireless networks without end-to-end feedback. Forward error-correction coding (FEC) is performed at the bit level to combat channel distortions and random linear network coding (RLNC) is performed at the packet level to recover from packet erasures. We focus on the scenario where RLNC re-encoding is performed at intermediate nodes and we assume that any packet that contains bit errors after FEC decoding can be detected and erased. To facilitate explicit characterization of data transmission over network-coded wireless systems, we propose a generic two-layer abstraction of a network that models both bit/symbol-level operations at the lower layer (termed PHY-layer) over several heterogeneous links and packet-level operations at the upper layer (termed NET-layer). Based on this model, we propose a network reduction method to characterize the throughput-reliability function of the end-to-end transmission. Our approach not only reveals an explicit tradeoff between data delivery rate and reliability, but also provides an intuitive visualization of the bottlenecks within the underlying network. We illustrate our approach via a point-to-point link and a relay network and highlight the advantages of this method over capacity-based approaches.Accepted for publication in IEEE Globecom 2014. Copyright will be transferred to IEEE without notice.QS22014</p

    Adaptive Network Coding Schemes for Satellite Communications

    Full text link
    In this paper, we propose two novel physical layer aware adaptive network coding and coded modulation schemes for time variant channels. The proposed schemes have been applied to different satellite communications scenarios with different Round Trip Times (RTT). Compared to adaptive network coding, and classical non-adaptive network coding schemes for time variant channels, as benchmarks, the proposed schemes demonstrate that adaptation of packet transmission based on the channel variation and corresponding erasures allows for significant gains in terms of throughput, delay and energy efficiency. We shed light on the trade-off between energy efficiency and delay-throughput gains, demonstrating that conservative adaptive approaches that favors less transmission under high erasures, might cause higher delay and less throughput gains in comparison to non-conservative approaches that favor more transmission to account for high erasures.Comment: IEEE Advanced Satellite Multimedia Systems Conference and the 14th Signal Processing for Space Communications Workshop (ASMS/SPSC), 201

    Adaptive Network Coding for Scheduling Real-time Traffic with Hard Deadlines

    Full text link
    We study adaptive network coding (NC) for scheduling real-time traffic over a single-hop wireless network. To meet the hard deadlines of real-time traffic, it is critical to strike a balance between maximizing the throughput and minimizing the risk that the entire block of coded packets may not be decodable by the deadline. Thus motivated, we explore adaptive NC, where the block size is adapted based on the remaining time to the deadline, by casting this sequential block size adaptation problem as a finite-horizon Markov decision process. One interesting finding is that the optimal block size and its corresponding action space monotonically decrease as the deadline approaches, and the optimal block size is bounded by the "greedy" block size. These unique structures make it possible to narrow down the search space of dynamic programming, building on which we develop a monotonicity-based backward induction algorithm (MBIA) that can solve for the optimal block size in polynomial time. Since channel erasure probabilities would be time-varying in a mobile network, we further develop a joint real-time scheduling and channel learning scheme with adaptive NC that can adapt to channel dynamics. We also generalize the analysis to multiple flows with hard deadlines and long-term delivery ratio constraints, devise a low-complexity online scheduling algorithm integrated with the MBIA, and then establish its asymptotical throughput-optimality. In addition to analysis and simulation results, we perform high fidelity wireless emulation tests with real radio transmissions to demonstrate the feasibility of the MBIA in finding the optimal block size in real time.Comment: 11 pages, 13 figure

    Whether and Where to Code in the Wireless Relay Channel

    Full text link
    The throughput benefits of random linear network codes have been studied extensively for wirelined and wireless erasure networks. It is often assumed that all nodes within a network perform coding operations. In energy-constrained systems, however, coding subgraphs should be chosen to control the number of coding nodes while maintaining throughput. In this paper, we explore the strategic use of network coding in the wireless packet erasure relay channel according to both throughput and energy metrics. In the relay channel, a single source communicates to a single sink through the aid of a half-duplex relay. The fluid flow model is used to describe the case where both the source and the relay are coding, and Markov chain models are proposed to describe packet evolution if only the source or only the relay is coding. In addition to transmission energy, we take into account coding and reception energies. We show that coding at the relay alone while operating in a rateless fashion is neither throughput nor energy efficient. Given a set of system parameters, our analysis determines the optimal amount of time the relay should participate in the transmission, and where coding should be performed.Comment: 11 pages, 12 figures, to be published in the IEEE JSAC Special Issue on Theories and Methods for Advanced Wireless Relay

    Joint Coding and Scheduling Optimization in Wireless Systems with Varying Delay Sensitivities

    Full text link
    Throughput and per-packet delay can present strong trade-offs that are important in the cases of delay sensitive applications.We investigate such trade-offs using a random linear network coding scheme for one or more receivers in single hop wireless packet erasure broadcast channels. We capture the delay sensitivities across different types of network applications using a class of delay metrics based on the norms of packet arrival times. With these delay metrics, we establish a unified framework to characterize the rate and delay requirements of applications and optimize system parameters. In the single receiver case, we demonstrate the trade-off between average packet delay, which we view as the inverse of throughput, and maximum ordered inter-arrival delay for various system parameters. For a single broadcast channel with multiple receivers having different delay constraints and feedback delays, we jointly optimize the coding parameters and time-division scheduling parameters at the transmitters. We formulate the optimization problem as a Generalized Geometric Program (GGP). This approach allows the transmitters to adjust adaptively the coding and scheduling parameters for efficient allocation of network resources under varying delay constraints. In the case where the receivers are served by multiple non-interfering wireless broadcast channels, the same optimization problem is formulated as a Signomial Program, which is NP-hard in general. We provide approximation methods using successive formulation of geometric programs and show the convergence of approximations.Comment: 9 pages, 10 figure

    Multihop Diversity in Wideband OFDM Systems: The Impact of Spatial Reuse and Frequency Selectivity

    Full text link
    The goal of this paper is to establish which practical routing schemes for wireless networks are most suitable for wideband systems in the power-limited regime, which is, for example, a practically relevant mode of operation for the analysis of ultrawideband (UWB) mesh networks. For this purpose, we study the tradeoff between energy efficiency and spectral efficiency (known as the power-bandwidth tradeoff) in a wideband linear multihop network in which transmissions employ orthogonal frequency-division multiplexing (OFDM) modulation and are affected by quasi-static, frequency-selective fading. Considering open-loop (fixed-rate) and closed-loop (rate-adaptive) multihop relaying techniques, we characterize the impact of routing with spatial reuse on the statistical properties of the end-to-end conditional mutual information (conditioned on the specific values of the channel fading parameters and therefore treated as a random variable) and on the energy and spectral efficiency measures of the wideband regime. Our analysis particularly deals with the convergence of these end-to-end performance measures in the case of large number of hops, i.e., the phenomenon first observed in \cite{Oyman06b} and named as ``multihop diversity''. Our results demonstrate the realizability of the multihop diversity advantages in the case of routing with spatial reuse for wideband OFDM systems under wireless channel effects such as path-loss and quasi-static frequency-selective multipath fading.Comment: 6 pages, to be published in Proc. 2008 IEEE International Symposium on Spread Spectrum Techniques and Applications (IEEE ISSSTA'08), Bologna, Ital

    Delay Performance of MISO Wireless Communications

    Full text link
    Ultra-reliable, low latency communications (URLLC) are currently attracting significant attention due to the emergence of mission-critical applications and device-centric communication. URLLC will entail a fundamental paradigm shift from throughput-oriented system design towards holistic designs for guaranteed and reliable end-to-end latency. A deep understanding of the delay performance of wireless networks is essential for efficient URLLC systems. In this paper, we investigate the network layer performance of multiple-input, single-output (MISO) systems under statistical delay constraints. We provide closed-form expressions for MISO diversity-oriented service process and derive probabilistic delay bounds using tools from stochastic network calculus. In particular, we analyze transmit beamforming with perfect and imperfect channel knowledge and compare it with orthogonal space-time codes and antenna selection. The effect of transmit power, number of antennas, and finite blocklength channel coding on the delay distribution is also investigated. Our higher layer performance results reveal key insights of MISO channels and provide useful guidelines for the design of ultra-reliable communication systems that can guarantee the stringent URLLC latency requirements.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    • …
    corecore