34 research outputs found

    Optimal storage allocation on throwboxes in Mobile Social Networks

    Get PDF
    In the context of Mobile Social Networks (MSNs), a type of wireless storage device called throwbox has emerged as a promising way to improve the efficiency of data delivery. Recent studies focus on the deployment of throwboxes to maximize data delivery opportunities. However, as a storage device, the storage usage of throwboxes has seldom been addressed by existing work. In this paper, the storage allocation of throwboxes is studied as two specific problems: (1) if throwboxes are fixed at particular places, how to allocate storage to the throwboxes; and (2) if throwboxes are deployable, how to conduct storage allocation in combination with throwbox deployment. Two optimization models are proposed to calculate the optimal storage allocation with a knowledge of the contact history of users. Real trace based simulations demonstrate that the proposed scheme is able to not only decrease data loss on throwboxes but also improve the efficiency of data delivery

    Improving vehicular delay-tolerant network performance with relay nodes

    Get PDF
    “Copyright © [2009] IEEE. Reprinted from Next Generation Internet Network. NGI '09). ISBN:978-1-4244-4244-7. This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.”Vehicular Delay-Tolerant Networking (VDTN) is an extension of the Delay-Tolerant Network (DTN) architecture concept to transit networks. VDTN architecture handles non-real time applications, exploiting vehicles to enable connectivity under unreliable scenarios with unstable links and where an end-to-end path may not exist. Intuitively, the use of stationary store-and-forward devices (relay nodes) located at crossroads where vehicles meet them and should improve the message delivery probability. In this paper, we analyze the influence of the number of relay nodes, in urban scenarios with different numbers of vehicles. It was shown that relay nodes significantly improve the message delivery probability on studied DTN routing protocols.Part of this work has been supported by the Instituto de TelecomunicaçÔes, Next Generation Networks and Applications Group, Portugal, in the framework of the Project VDTN@Lab, and by the Euro-NF Network of Excellence of Seven Framework Programme of EU

    Source Delay in Mobile Ad Hoc Networks

    Full text link
    Source delay, the time a packet experiences in its source node, serves as a fundamental quantity for delay performance analysis in networks. However, the source delay performance in highly dynamic mobile ad hoc networks (MANETs) is still largely unknown by now. This paper studies the source delay in MANETs based on a general packet dispatching scheme with dispatch limit ff (PD-ff for short), where a same packet will be dispatched out up to ff times by its source node such that packet dispatching process can be flexibly controlled through a proper setting of ff. We first apply the Quasi-Birth-and-Death (QBD) theory to develop a theoretical framework to capture the complex packet dispatching process in PD-ff MANETs. With the help of the theoretical framework, we then derive the cumulative distribution function as well as mean and variance of the source delay in such networks. Finally, extensive simulation and theoretical results are provided to validate our source delay analysis and illustrate how source delay in MANETs are related to network parameters.Comment: 11page

    Coping with Episodic Connectivity in Heterogeneous Networks

    Get PDF
    International audienceIn this paper, we present an efficient message delivery mechanism that enables distribution/dissemination of messages in an internet connecting heterogeneous networks and prone to disruptions in connectivity. We call our protocol MeDeHa (pronounced “medea”) for Message Delivery in Heterogeneous, Disruptionprone Networks. MeDeHa is complementary to the IRTF's Bundle Architecture: while the Bundle Architecture provides storage above the transport layer in order to enable interoperability among networks that support different types of transport layers, MeDeHa stores data at the link layer addressing heterogeneity at lower layers (e.g., when intermediate nodes do not support higher-layer protocols). MeDeHa also takes advantage of network heterogeneity (e.g., nodes supporting more than one network) to improve message delivery. For example, in the case of IEEE 802.11 networks, participating nodes may use both infrastructure- and ad hoc modes to deliver data to otherwise unavailable destinations. Another important feature of MeDeHa is that there is no need to deploy special-purpose nodes such as message ferries, data mules, or throwboxes in order to relay data to intended destinations, or to connect to the backbone network wherever infrastructure is available. The network is able to store data destined to temporarily unavailable nodes for some time depending upon existing storage as well as quality-of-service issues such as delivery delay bounds imposed by the application. We evaluate MeDeHa via simulations using indoor scenarios (e.g. convention centers, exposition halls, museums etc.) and show significant improvement in delivery ratio in the face of episodic connectivity. We also showcase MeDeHa's support for different levels of quality-of-service through traffic differentiation and message prioritization

    Performance of ad hoc networks with two-hop relay routing and limited packet lifetime (extended version)

    Get PDF
    We consider a mobile ad hoc network consisting of three types of nodes (source, destination and relay nodes) and using the two-hop relay routing. This type of routing takes advantage of the mobility and the storage capacity of the nodes, called the relay nodes, in order to route packets between a source and a destination. Packets at relay nodes are assumed to have a limited lifetime in the network. Nodes are moving inside a bounded region according to some random mobility model. Closed-form expressions and asymptotic results when the number of nodes is large are provided for the packet delivery delay and for the energy needed to transmit a packet from the source to its destination. We also introduce and evaluate a variant of the two-hop relay protocol that limits the number of generated copies in the network. Our model is validated through simulations for two mobility models (random waypoint and random direction mobility models), and the performance of the two-hop routing and of the epidemic routing protocols are compared.\ud \u

    Effective and Efficient Communication and Collaboration in Participatory Environments

    Get PDF
    Participatory environments pose significant challenges to deploying real applications. This dissertation investigates exploitation of opportunistic contacts to enable effective and efficient data transfers in challenged participatory environments. There are three main contributions in this dissertation: 1. A novel scheme for predicting contact volume during an opportunistic contact (PCV); 2. A method for computing paths with combined optimal stability and capacity (COSC) in opportunistic networks; and 3. An algorithm for mobility and orientation estimation in mobile environments (MOEME). The proposed novel scheme called PCV predicts contact volume in soft real-time. The scheme employs initial position and velocity vectors of nodes along with the data rate profile of the environment. PCV enables efficient and reliable data transfers between opportunistically meeting nodes. The scheme that exploits capacity and path stability of opportunistic networks is based on PCV for estimating individual link costs on a path. The total path cost is merged with a stability cost to strike a tradeoff for maximizing data transfers in the entire participatory environment. A polynomial time dynamic programming algorithm is proposed to compute paths of optimum cost. We propose another novel scheme for Real-time Mobility and Orientation Estimation for Mobile Environments (MOEME), as prediction of user movement paves way for efficient data transfers, resource allocation and event scheduling in participatory environments. MOEME employs the concept of temporal distances and uses logistic regression to make real time estimations about user movement. MOEME relies only on opportunistic message exchange and is fully distributed, scalable, and requires neither a central infrastructure nor Global Positioning System. Indeed, accurate prediction of contact volume, path capacity and stability and user movement can improve performance of deployments. However, existing schemes for such estimations make use of preconceived patterns or contact time distributions that may not be applicable in uncertain environments. Such patterns may not exist, or are difficult to recognize in soft-real time, in open environments such as parks, malls, or streets

    Delay Tolerant Networking over the Metropolitan Public Transportation

    Get PDF
    We discuss MDTN: a delay tolerant application platform built on top of the Public Transportation System (PTS) and able to provide service access while exploiting opportunistic connectivity. Our solution adopts a carrier-based approach where buses act as data collectors for user requests requiring Internet access. Simulations based on real maps and PTS routes with state-of-the-art routing protocols demonstrate that MDTN represents a viable solution for elastic nonreal-time service delivery. Nevertheless, performance indexes of the considered routing policies show that there is no golden rule for optimal performance and a tailored routing strategy is required for each specific case

    Hybrid routing in delay tolerant networks

    Get PDF
    This work addresses the integration of today\\u27s infrastructure-based networks with infrastructure-less networks. The resulting Hybrid Routing System allows for communication over both network types and can help to overcome cost, communication, and overload problems. Mobility aspect resulting from infrastructure-less networks are analyzed and analytical models developed. For development and deployment of the Hybrid Routing System an overlay-based framework is presented
    corecore