1,347 research outputs found

    An energy scaled and expanded vector-based forwarding scheme for industrial underwater acoustic sensor networks with sink mobility

    Get PDF
    Industrial Underwater Acoustic Sensor Networks (IUASNs) come with intrinsic challenges like long propagation delay, small bandwidth, large energy consumption, three-dimensional deployment, and high deployment and battery replacement cost. Any routing strategy proposed for IUASN must take into account these constraints. The vector based forwarding schemes in literature forward data packets to sink using holding time and location information of the sender, forwarder, and sink nodes. Holding time suppresses data broadcasts; however, it fails to keep energy and delay fairness in the network. To achieve this, we propose an Energy Scaled and Expanded Vector-Based Forwarding (ESEVBF) scheme. ESEVBF uses the residual energy of the node to scale and vector pipeline distance ratio to expand the holding time. Resulting scaled and expanded holding time of all forwarding nodes has a significant difference to avoid multiple forwarding, which reduces energy consumption and energy balancing in the network. If a node has a minimum holding time among its neighbors, it shrinks the holding time and quickly forwards the data packets upstream. The performance of ESEVBF is analyzed through in network scenario with and without node mobility to ensure its effectiveness. Simulation results show that ESEVBF has low energy consumption, reduces forwarded data copies, and less end-to-end delay

    Self-Organizing and Scalable Routing Protocol (SOSRP) for Underwater Acoustic Sensor Networks

    Get PDF
    Las redes de sensores acústicas submarinas (UASN) han ganado mucha importancia en los últimos años: el 71% de la superficie de la Tierra está cubierta por océanos. La mayoría de ellos, aún no han sido explorados. Aplicaciones como prospección de yacimientos, prevención de desastres o recopilación de datos para estudios de biología marina se han convertido en el campo de interés para muchos investigadores. Sin embargo, las redes UASN tienen dos limitaciones: un medio muy agresivo (marino) y el uso de señales acústicas. Ello hace que las técnicas para redes de sensores inalámbricas (WSN) terrestres no sean aplicables. Tras realizar un recorrido por el estado del arte en protocolos para redes UASN, se propone en este TFM un protocolo de enrutamiento denominado "SOSRP", descentralizado y basado en tablas en cada nodo. Se usa como criterio para crear rutas una combinación del valor de saltos hasta el nodo recolector y la distancia. Las funciones previstas del protocolo abarcan: autoorganización de las rutas, tolerancia a fallos y detección de nodos aislados. Mediante la implementación en MATLAB de SOSRP así como de un modelo de propagación y energía apropiados para entorno marino, se obtienen resultados de rendimiento en distintos escenarios (variando nºextremo de paquetes, consumo de energía o longitud de rutas creadas (con y sin fallo). Los resultados obtenidos muestran una operación estable, fiable y adecuada para el despliegue y operación de los nodos en redes UASN

    A performance simulation tool for the analysis of data gathering in both terrestrial and underwater sensor networks

    Get PDF
    Wireless sensor networks (WSNs) have greatly contributed to human-associated technologies. The deployment of WSNs has transcended several paradigms. Two of the most significant features of WSNs are the intensity of deployment and the criticalness of the applications that they govern. The tradeoff between volume and cost requires justified investments for evaluating the multitudes of hardware and complementary software options. In underwater sensor networks (USNs), testing any technique is not only costly but also difficult in terms of full deployment. Therefore, evaluation prior to the actual procurement and setup of a WSN and USN is an extremely important step. The spectrum of performance analysis tools encompassing the test-bed, analysis, and simulation has been able to provide the prerequisites that these evaluations require. Simulations have proven to be an extensively used tool for analysis in the computer network field. A number of simulation tools have been developed for wired/wireless radio networks. However, each simulation tool has several restrictions when extended to the analysis of WSNs. These restrictions are largely attributed to the unique nature of each WSN within a designated area of research. In addition, these tools cannot be used for underwater environments with an acoustic communication medium, because there is a wide range of differences between radio and acoustic communications. The primary purpose of this paper is to present, propose, and develop a discrete event simulation designed specifically for mobile data gathering in WSNs. In addition, this simulator has the ability to simulate 2-D USNs. This simulator has been tailored to cater to both mobile and static data gathering techniques for both topologies, which are either dense or light. The results obtained using this simulator have shown an evolving efficient simulator for both WSNs and USNs. The developed simulator has been extensively tested in terms of its validity and scope of governance

    Dynamic Vehicle Routing for Data Gathering in Wireless Networks

    Full text link
    We consider a dynamic vehicle routing problem in wireless networks where messages arriving randomly in time and space are collected by a mobile receiver (vehicle or a collector). The collector is responsible for receiving these messages via wireless communication by dynamically adjusting its position in the network. Our goal is to utilize a combination of wireless transmission and controlled mobility to improve the delay performance in such networks. We show that the necessary and sufficient condition for the stability of such a system (in the bounded average number of messages sense) is given by {\rho}<1 where {\rho} is the average system load. We derive fundamental lower bounds for the delay in the system and develop policies that are stable for all loads {\rho}<1 and that have asymptotically optimal delay scaling. Furthermore, we extend our analysis to the case of multiple collectors in the network. We show that the combination of mobility and wireless transmission results in a delay scaling of {\Theta}(1/(1- {\rho})) with the system load {\rho} that is a factor of {\Theta}(1/(1- {\rho})) smaller than the delay scaling in the corresponding system where the collector visits each message location.Comment: 19 pages, 7 figure

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    Effective Node Clustering and Data Dissemination In Large-Scale Wireless Sensor Networks

    Get PDF
    The denseness and random distribution of large-scale WSNs makes it quite difficult to replace or recharge nodes. Energy efficiency and management is a major design goal in these networks. In addition, reliability and scalability are two other major goals that have been identified by researchers as necessary in order to further expand the deployment of such networks for their use in various applications. This thesis aims to provide an energy efficient and effective node clustering and data dissemination algorithm in large-scale wireless sensor networks. In the area of clustering, the proposed research prolongs the lifetime of the network by saving energy through the use of node ranking to elect cluster heads, contrary to other existing cluster-based work that selects a random node or the node with the highest energy at a particular time instance as the new cluster head. Moreover, a global knowledge strategy is used to maintain a level of universal awareness of existing nodes in the subject area and to avoid the problem of disconnected or forgotten nodes. In the area of data dissemination, the aim of this research is to effectively manage the data collection by developing an efficient data collection scheme using a ferry node and applying a selective duty cycle strategy to the sensor nodes. Depending on the application, mobile ferries can be used for collecting data in a WSN, especially those that are large in scale, with delay tolerant applications. Unlike data collection via multi-hop forwarding among the sensing nodes, ferries travel across the sensing field to collect data. A ferry-based approach thus eliminates, or minimizes, the need for the multi-hop forwarding of data, and as a result, energy consumption at the nodes will be significantly reduced. This is especially true for nodes that are near the base station as they are used by other nodes to forward data to the base station. MATLAB is used to design, simulate and evaluate the proposed work against the work that has already been done by others by using various performance criteria

    Classification of Routing Algorithms in Volatile Environment of Underwater Wireless Sensor Networks

    Get PDF
    The planet earth is basically a planet of water with less than 30% land mass available for humans to live on. However, the areas covered with water are important to mankind for the various resources which have been proven to be valuable. Such resources are gas, oil, marine products which can be used as food, and other minerals. In view of the vast area in which these resources can be found, a network of sensors is necessary so that they can be explored. However, sensor networks may not be helpful in the exploration of these resources if they do not have a sufficiently good routing mechanism. Over the past few decades, several methods for routing have been suggested to address the volatile environment in underwater communications. These continue researches; have enhanced the performance along with time. Meanwhile, there are still challenges to deal with for a better and efficient routing of data packets. Large end-to-end delays, high error channel rates, limited bandwidth, and the consumption of energy in sensor network are some such challenges. A comprehensive survey of the various routing methods for the partially connected underwater communication environment are presented in this paper
    corecore