57 research outputs found

    Code-timing synchronization in DS-CDMA systems using space-time diversity

    Get PDF
    The synchronization of a desired user transmitting a known training sequence in a direct-sequence (DS) asynchronous code-division multiple-access (CDMA) sys-tem is addressed. It is assumed that the receiver consists of an arbitrary antenna array and works in a near-far, frequency-nonselective, slowly fading channel. The estimator that we propose is derived by applying the maximum likelihood (ML) principle to a signal model in which the contribution of all the interfering compo-nents (e.g., multiple-access interference, external interference and noise) is modeled as a Gaussian term with an unknown and arbitrary space-time correlation matrix. The main contribution of this paper is the fact that the estimator makes eÆcient use of the structure of the signals in both the space and time domains. Its perfor-mance is compared with the Cramer-Rao Bound, and with the performance of other methods proposed recently that also employ an antenna array but only exploit the structure of the signals in one of the two domains, while using the other simply as a means of path diversity. It is shown that the use of the temporal and spatial structures is necessary to achieve synchronization in heavily loaded systems or in the presence of directional external interference.Peer ReviewedPostprint (published version

    Crossed-dipole arrays for asynchronous DS-CDMA systems

    No full text
    Published versio

    Blind adaptive constrained reduced-rank parameter estimation based on constant modulus design for CDMA interference suppression

    Get PDF
    This paper proposes a multistage decomposition for blind adaptive parameter estimation in the Krylov subspace with the code-constrained constant modulus (CCM) design criterion. Based on constrained optimization of the constant modulus cost function and utilizing the Lanczos algorithm and Arnoldi-like iterations, a multistage decomposition is developed for blind parameter estimation. A family of computationally efficient blind adaptive reduced-rank stochastic gradient (SG) and recursive least squares (RLS) type algorithms along with an automatic rank selection procedure are also devised and evaluated against existing methods. An analysis of the convergence properties of the method is carried out and convergence conditions for the reduced-rank adaptive algorithms are established. Simulation results consider the application of the proposed techniques to the suppression of multiaccess and intersymbol interference in DS-CDMA systems

    Channel estimation and signal enhancement for DS-CDMA systems

    Get PDF
    This dissertation focuses on topics of Bayesian-based multiuser detection, space-time (S-T) transceiver design, and S-T channel parameter estimation for direct-sequence code-division multiple-access (DS-CDMA) systems. Using the Bayesian framework, various linear and simplified nonlinear multiuser detectors are proposed, and their performances are analyzed. The simplified non-linear Bayesian solutions can bridge the performance gap between sub-optimal linear multiuser detectors and the optimum multiuser detector. To further improve the system capacity and performance, S-T transceiver design approaches with complexity constraint are investigated. Novel S-T receivers of low-complexity that jointly use the temporal code-signature and the spatial signature are proposed. Our solutions, which lead to generalized near-far resistant S-T RAKE receivers, achieve better interference suppression than the existing S-T RAKE receivers. From transmitter side, we also proposed a transmit diversity (TD) technique in combination with differential detection for the DS-CDMA systems. It is shown that the proposed S-T TD scheme in combination with minimum variance distortionless response transceiver (STTD+MVDR) is near-far resistant and outperforms the conventional STTD and matched filter based (STTD+MF) transceiver scheme. Obtaining channel state information (CSI) is instrumental to optimum S-T transceiver design in wireless systems. Another major focus of this dissertation is to estimate the S-T channel parameters. We proposed an asymptotic, joint maximum likelihood (ML) method of estimating multipath channel parameters for DS-CDMA systems. An iterative estimator is proposed to further simplify the computation. Analytical and simulation results show that the iterative estimation scheme is near-far resistant for both time delays and DOAs. And it reaches the corresponding CRBs after a few iterations

    ML estimator and hybrid beamformer for multipath and interference mitigation in GNSS receivers

    Get PDF
    This paper addresses the estimation of the code-phase(pseudorange) and the carrier-phase of the direct signal received from a direct-sequence spread-spectrum satellite transmitter. The signal is received by an antenna array in a scenario with interference and multipath propagation. These two effects are generally the limiting error sources in most high-precision positioning applications. A new estimator of the code- and carrier-phases is derived by using a simplified signal model and the maximum likelihood (ML) principle. The simplified model consists essentially of gathering all signals, except for the direct one, in a component with unknown spatial correlation. The estimator exploits the knowledge of the direction-of-arrival of the direct signal and is much simpler than other estimators derived under more detailed signal models. Moreover, we present an iterative algorithm, that is adequate for a practical implementation and explores an interesting link between the ML estimator and a hybrid beamformer. The mean squared error and bias of the new estimator are computed for a number of scenarios and compared with those of other methods. The presented estimator and the hybrid beamforming outperform the existing techniques of comparable complexity and attains, in many situations, the Cramér–Rao lower bound of the problem at hand.Peer Reviewe

    Bearing estimation techniques for improved performance spread spectrum receivers

    Get PDF
    The main topic of this thesis is the use of bearing estimation techniques combined with multiple antenna elements for spread spectrum receivers. The motivation behind this work is twofold: firstly, this type of receiver structure may offer the ability to locate the position of a mobile radio in an urban environment. Secondly, these algorithms permit the application of space division multiple access (SDMA) to cellular mobile radio, which can offer large system capacity increases. The structure of these receivers may naturally be divided into two parts: signal detection and spatial filtering blocks. The signal detection problem involves locating the bearings of the multipath components which arise from the transmission of the desired user’s signal. There are a number of approaches to this problem, but here the MUSIC algorithm will be adopted. This algorithm requires an initial estimate of the number of signals impinging on the receiver, a task which can be performed by model order determination techniques. A major deficiency of MUSIC is its inability to resolve the highly–correlated and coherent multipath signals which frequently occur in a spread spectrum system. One of the simplest ways to overcome this problem is to employ spatial smoothing techniques, which trade the size of the antenna array for the ability to resolve coherent signals. The minimum description length (MDL) is one method for determining the signal model order and it can easily be extended to calculating the required degree of spatial smoothing. In this thesis, an approach to analysing the probability of correct model order determination for the MDL with spatial smoothing is presented. The performance of MUSIC, combined with spatial smoothing, is also of great significance. Two smoothing algorithms, spatial smoothing and forward–backward spatial smoothing, are analysed to compare their performance. If SDMA techniques are to be deployed in cellular systems, it is important to first estimate the performance improvements available from applying antenna array spatial filters. Initially, an additive white Gaussian noise channel is used for estimating the capacity of a perfect power–controlled code division multiple access system with SDMA techniques. Results suggest that the mean interference levels are almost halved as the antenna array size doubles, permitting large capacity increases. More realistic multipath models for urban cellular radio channels are also considered. If the transmitter gives rise to a number of point source multipath components, the bearing estimation receiver is able to capture the signal energy of each multipath. However, when a multipath component has significant angular spread, bearing estimation receivers need to combine separate directional components, at an increased cost in complexity, to obtain similar results to a matched filter. Finally, a source location algorithm for urban environments is presented, based on bearing estimation of multipath components. This algorithm requires accurate knowledge of the positions of the major multipath reflectors present in the environment. With this knowledge it is possible to determine the position of a transmitting mobile unit. Simulation results suggest that the algorithm is very sensitive to angular separation of the multipath components used for the source location technique
    • …
    corecore