96 research outputs found

    Low-Latency Millimeter-Wave Communications: Traffic Dispersion or Network Densification?

    Full text link
    This paper investigates two strategies to reduce the communication delay in future wireless networks: traffic dispersion and network densification. A hybrid scheme that combines these two strategies is also considered. The probabilistic delay and effective capacity are used to evaluate performance. For probabilistic delay, the violation probability of delay, i.e., the probability that the delay exceeds a given tolerance level, is characterized in terms of upper bounds, which are derived by applying stochastic network calculus theory. In addition, to characterize the maximum affordable arrival traffic for mmWave systems, the effective capacity, i.e., the service capability with a given quality-of-service (QoS) requirement, is studied. The derived bounds on the probabilistic delay and effective capacity are validated through simulations. These numerical results show that, for a given average system gain, traffic dispersion, network densification, and the hybrid scheme exhibit different potentials to reduce the end-to-end communication delay. For instance, traffic dispersion outperforms network densification, given high average system gain and arrival rate, while it could be the worst option, otherwise. Furthermore, it is revealed that, increasing the number of independent paths and/or relay density is always beneficial, while the performance gain is related to the arrival rate and average system gain, jointly. Therefore, a proper transmission scheme should be selected to optimize the delay performance, according to the given conditions on arrival traffic and system service capability

    UWB channel characterization in 28 ghz millimeter waveband for 5G cellular networks

    Get PDF
    The demands of high data rate transmission for future wireless communication technologies are increasing rapidly. The current bands for cellular network will not be able to satisfy these requirements. The millimeter wave (mm-wave) bands are the candidate bands for the future cellular networks. The 28 GHz band is the strongest candidate for 5G cellular networks. The large bandwidth at this band is one of the main parameters that make the mm-wave bands promising candidate for the future cellular networks. To know the wideband channel behavior in mm-wave bands, the wideband channel characterizations are required. In this paper, the 3D WINNER model is used to model the wideband channel at 28 GHz band. Based on this model, the time dispersion parameters at 28 GHz mm-wave band are investigated. The root mean square delay spread and the mean excess delay are the main parameters that can be used to characterize the wideband channel. Morever, the cumulative distribution function (CDF) is used to model the RMS delay spreads. The results show that the RMS delay spread varies between 4.1 ns and 443.7 ns

    Millimeter wave radio channels: properties, multipath modeling and simulations

    Get PDF
    Based on the characterization of realistic radio channels, results presented in this dissertation lead towards an understanding that when moving up to the higher frequencies, frequency itself does not play a significant role in defining the channel modeling methodology. In fact, how a propagation channel is illuminated is of fundamental importance. Therefore, millimeter wave (mmWave) system properties such as a high antenna directivity and system bandwidth are shown to have a great influence on the channel model definition. In this thesis, a fundamental assumption made in the state-of-the-art millimeter wave wireless channel models is challenged. It has been shown that Rayleigh-Rice fading assumption made in the state-of-the-art channel models for resolvable channel taps does not remain valid. This is mainly due to the sparse multipath illumination caused by high antenna directivity and high bandwidth of a mmWave system.Studies presented in this thesis are based on the characterization of realistic radio channels obtained from exhaustive channel sounding campaigns. Mainly, three fundamental problems of wireless channel modelling have been investigated for millimetre wave (mmWave) radio channel modelling application, namely (i) Frequency dependence of propagation, (ii) Impact of antenna directivity on the channel model definition, and (iii) Impact of system bandwidth on the radio channel modelling. A detailed description of these problems is as follows: (i) Frequency Dependence of Propagation. Multi-band measurement campaigns arecarried out using directional antennas which do an omni-directional scan of the propagation environment. During the measurements, Tx-Rx systems are placed at fixed positions and the propagation environment remained as static as possible. Using synthesized omni-directional power delay profiles (PDPs), we aim to investigate if there exists a frequency dependency in the multipath dispersion statistics, e.g. delay and angular spreads. (ii) Impact of Antenna Directivity on the Channel Model Definition. Small-scale fading measurements are carried out which emulate a scenario, where a radio communication link is established through a single multipath cluster which is illuminated using antennas with different Half Power Beam Widths (HPBW). The major goal here is to investigate the impact of spatial multipath filtering on the small-scale fading due to high antenna directivity. In particular, the impact on variations in the receive signal strength and the validity of narrowband wide-sense stationary assumption (both in time and frequency domains) is investigated. (iii) Impact of System Bandwidth on the Radio Channel Modelling. Small-scale fading measurements are used to illuminate multipath clusters in a lecture room scenario. The primary objective is to investigate the impact of high system bandwidth on variations in the receive signal strength, randomness in the cross-polarization power ratio (XPR) and richness of the multipath scattering. Based on the characterization of realistic radio channels, results presented in this dissertation lead towards an understanding that when moving up to the higher frequencies, frequency itself does not play a significant role in defining the channel modelling methodology. In fact, how a propagation channel is illuminated is of fundamental importance. Therefore, mmWave system properties such as a high antenna directivity and system bandwidth are shown to have a high influence on the channel model definition. In general, fade depth scaling as a function of system bandwidth is quite well understood. We demonstrate that, the high antenna directivity of mmWave systems result in a further reduction in the fading depth. In addition, we explore some new directions to this line of research which are based on the second-order statistical analysis of the channel impulse response (CIR) vector. Our results emphasize that, fading statistics of resolvable channel taps in a mmWave radio channel cannot be modelled as Rayleigh-Rice distributed random variables. This is primarily due to the fact that channels with sparse scattering conditions are illuminated due to high antenna directivity and bandwidth of mmWave systems. Consequently, the complex Gaussian random variable assumption associated with Rayleigh-Rice fading distributions does not remain valid. Further, it has been demonstrated that, high antenna directivity and bandwidth of mmWave systems also raise a question mark on the validity of wide-sense stationary (WSS) assumption in the slow-time domain of mmWave radio channels. Results presented in this contribution are novel and they provide theoretically consistent insights into the measured radio channel.In dieser Arbeit werden drei grundlegende Probleme der Modellierung von Drahtloskanalen fur die Anwendung bei der Funkkanalmodellierung im Millimeterwellenbereich (mmWave) untersucht, namlich (i) die Frequenzabhangigkeit der Ausbreitung, (ii) der Einfluss der Antennenrichtwirkung auf die Definition des Kanalmodells und (iii) der Einfluss der Systembandbreite auf die Funkkanalmodellierung. Die detaillierte Beschreibung dieser Probleme lautet wie folgt: (i) Frequenzabhangigkeit der Ausbreitung. Mehrband-Messkampagnen werden mitRichtantennen durchgefuhrt, die eine omnidirektionale Abtastung der Ausbreitungsumgebung vornehmen. Wahrend der Messungen werden die Tx-Rx-Systeme an festen Positionen platziert und die Ausbreitungsumgebung bleibt so statisch wie moglich. Mit Hilfe von synthetisierten omnidirektionalen Verzogerungs-Leistungsprofilen soll untersucht werden, ob es eine Frequenzabhangigkeit in der Mehrwegeausbreitungsstatistik gibt, z.B. in der Verzogerung und der Winkelspreizung. (ii) Einfluss der Antennenrichtwirkung auf die Definition des Kanalmodells. Es werden Messungen des schnellen Schwunds durchgefuhrt, die ein Szenario emulieren, bei dem eine Funkverbindung uber ein einzelnes Mehrwege-Cluster aufgebaut wird, das mit Antennen mit unterschiedlichen Strahlbreiten ausgeleuchtet wird. Das Hauptzielist hier die Untersuchung des Einflusses der raumlichen Filterung auf den schnellen Schwund aufgrund der hohen Antennenrichtwirkung. Insbesondere wird die Auswirkung auf Variationen der Empfangssignalstarke und die Gultigkeit der Annahme der schmalbandigen Stationaritat im weiteren Sinne (sowohl im Zeit- als auch im Frequenzbereich) untersucht. (iii) Einfluss der Systembandbreite auf die Funkkanalmodellierung. Messungen desschnellen Schwunds werden verwendet, um Mehrwege-Cluster in einem Horsaal-Szenario auszuleuchten. Das primare Ziel ist es, den Einfluss einer hohen Systembandbreite auf die Variationen der Empfangssignalstarke, die Zufalligkeit des Kreuzpolarisationsverhaltnisses und die Reichhaltigkeit der Mehrwegstreuung zu untersuchen. Basierend auf der Charakterisierung realistischer FunkkanĂ€le fĂŒhren die in dieser Dissertation vorgestellten Ergebnisse zu dem VerstĂ€ndnis, dass beim Ubergang zu höheren Frequenzen die Frequenz x selbst keine signifikante Rolle bei der Definition der Kanalmodellierungsmethodik spielt. Vielmehr ist es von grundlegender Bedeutung, wie ein Ausbreitungskanal ausgeleuchtet wird. Daher zeigt sich, dass mmWave-Systemeigenschaften wie eine hohe Antennenrichtcharakteristik und Systembandbreite einen hohen Einfluss auf die Definition des Kanalmodells haben. Im Allgemeinen ist die Skalierung der Schwundtiefe als Funktion der Systembandbreite ziemlich gut verstanden. Wir zeigen, dass die hohe Antennenrichtwirkung von mmWave-Systemen zu einer weiteren Reduzierung der Schwundtiefe fĂŒhrt. ZusĂ€tzlich erforschen wir einige neue Richtungen in diesem Forschungsbereich, die auf der Analyse der Statistik zweiter Ordnung des Kanalimpulsantwort-Vektors basieren. Unsere Ergebnisse unterstreichen, dass die Schwund-Statistiken der auflösbaren Kanalabgriffe in einem mmWave-Funkkanal nicht als Rayleigh-Rice-verteilte Zufallsvariablen modelliert werden können. Dies liegt vor allem daran, dass durch die hohe Antennenrichtwirkung und Bandbreite von mmWave-Systemen Kanale mit spĂ€rlichen Streubedingungen ausgeleuchtet werden. Folglich ist die Annahme komplexer Gaus’scher Zufallsvariablen, die mit Rayleigh-Rice Schwundverteilungen verbunden ist, nicht mehr gĂŒltig. Des Weiteren wird gezeigt, dass die hohe Antennenrichtwirkung und Bandbreite von mmWave-Systemen auch die GĂŒltigkeit der Annahme von StationaritĂ€t im weiteren Sinne im Slow-Time-Bereich von mmWave-FunkkanĂ€len in Frage stellt. Die in diesem Beitrag vorgestellten Ergebnisse sind neuartig und bieten theoretisch konsistente Einblicke in den gemessenen Funkkanal

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Characterization and Modelling of Scattered Wireless Channel at 60 GHZ in an Underground Mine Gallery

    Get PDF
    RÉSUMÉ Depuis plus d’une dĂ©cennie, les applications du systĂšme de communication sans fil sont exigeantes et augmentent rapidement pour fournir des services multimĂ©dias au public. De nos jours, la recherche se concentre sur la conception de communication sans fil Ă  haute vitesse (i.e., 1 Gbps) en particulier dans des zones denses telles que des salles de confĂ©rence, des centres commerciaux,des stades et des lieux d’évĂ©nements publics ouverts. Des rĂ©seaux locaux sans fil (WLAN) et des rĂ©seaux cellulaires utilisent des hauts potentiels pour rĂ©ussir les haut dĂ©bit de donnĂ©es en utilisant diffĂ©rentes technologies de pointe telles que la coexistence entre l’évaluation Ă  long terme non autorisĂ© (LTE-U) et les canaux Wi-Fi. En outre, la faisabilitĂ© d’utiliser le spectre Ă  haute frĂ©quence (i.e,> 6 GHz), une couche physique Ă  60 GHz pour les rĂ©seaux denses sont mis en Ă©vidence lorsque des liens de communication Ă  courte distance (par exemple, <10 m) sont nĂ©cessaires aussi bien dans WLAN (i.e, WiGig) et le rĂ©seau cellulaire (i.e, 5G petite cellule). Cependant, les applications Ă  60 GHz se dirigent vers la communication sans fil souterraine pour une meilleure gĂ©olocalisation, les applications haute dĂ©finition (HD) de streaming vidĂ©o dans une galerie plus grande longueur (i.e,> 100 m) en raison de sa capacitĂ© de formation de faisceau et de plus grande capacitĂ©. Pour aider le concepteur du systĂšme, il est nĂ©cessaire de connaĂźtre les informations de propagation du canal sans fil diffusĂ© puisque le plancher de la galerie, le plafond et le mur ont diffĂ©rentes rugositĂ©s (i.e.,> 5 mm). Cette thĂšse prĂ©sente les rĂ©sultats de la caractĂ©risation du canal sans fil et la modĂ©lisation statistique Ă  60 GHz d’une mine souterraine Ă  CANMET ayant des galeries dont la profondeur varie entre 40 m et 70 m. Depuis plus d’une dĂ©cennie, les applications du systĂšme de communication sans fil sont exigeantes et augmentent rapidement pour fournir des services multimĂ©dias au public. Les rĂ©sultats montrent que l’écart angulaire de la propagation par trajets multiples est inversement proportionnel Ă  la distance entre l’émetteur et le rĂ©cepteur. Un phĂ©nomĂšne de dispersion solide est Ă©galement observĂ© dans le canal en observant l’angle de propagation des diffĂ©rents trajets. Des polarisations horizontales (H) et verticales (V) ont Ă©tĂ© utilisĂ©es puisque les diagrammes de rayonnement sont diffĂ©rents et peuvent fournir des comportements de dispersion temporelle diffĂ©rents. Les rĂ©sultats montrent que l’antenne Ă  polarisation verticale fournit un plus grand nombre de trajets multiples par rapport Ă  polarisation horizontale et une valeur plus Ă©levĂ©e de moyenne quadratique (RMS) par rapport Ă  une horizontale. Par ailleurs, les mesures du coefficient de rĂ©flexion ont Ă©tĂ© effectuĂ©es pour Ă©tudier l’effet de dispersion de la surface rugueuse. Étant donnĂ© qu’aucun effet de regroupement sur le canal multitrajets n’a Ă©tĂ© observĂ©, une approche de modĂ©lisation statistique a Ă©tĂ© considĂ©rĂ©e en tenant compte des diffĂ©rents trajets parcourus et leur amplitude. Par insertion des paramĂštres de hauteur de la surface de mesure, les modĂšles de diffusion connus ont Ă©galement Ă©tĂ© analysĂ©es pour permettre la mise en oeuvre d’une approche de modĂ©lisation du canal dispersif.----------ABSTRACT More than a decade, there is a surge in demand and development of wireless communication system applications to deliver multimedia services. Nowadays the research is focused on the design of high speed (i.e., 1 Gbps) wireless system particularly in dense areas such as conference room, shopping mall, stadium and open public events. Wireless local area network (WLAN) and cellular network are making high potential approaches to fulfill high data rate by using different advanced technologies such as coexistence between Long Term Evaluation Unlicensed (LTE-U) and Wi-Fi Wireless channels. Moreover, the feasibility to use high-frequency spectrum (i.e., > 6 GHz), a physical layer research at 60 GHz for dense networks are highlighted where short-distance communication links (i.e., 100 m) due to its beamforming capability and higher capacity. To assist the system designer, it is necessary to know the scattered wireless channel propagation information since the gallery floor, ceiling and walls consist of the different magnitude of the roughness (i.e., > 5 mm). This thesis presents the results of wireless channel characterization and statistical modeling at 60 GHz where the measurements were carried out in CANMET underground mine (40 m and 70 m gallery depths). Several measurements were conducted with different antenna configurations and polarizations. Results show that angular and temporal dispersion are proportional to the mine gallery dimensions. Results also show that the angular spread of the multipath is inversely proportional to the transmitter receiver separation distance. A strong scattering phenomenon is also observed in the channel by observing multipath angle of arrivals. The use of Horizontal (H) and vertical (V) polarizations were performed due to its different radiation pattern can provide a different temporal dispersion behavior. The results show that a vertically polarized antenna provides a lower value of path loss exponent and a higher value of root mean square (RMS) delay spread compared to a horizontal one. Since no clustering effect was observed, a statistical modeling approach with the multipath arrivals and amplitudes was considered. In addition, the reflection coefficient measurements were conducted to investigate the scattering effect from the rough surface. By inserting measured surface height parameters, the known scattering models were also analyzed to have an idea to implement a modeling approach of the scattered channel

    Time dynamic channel model for broadband fixed wireless access systems

    Get PDF
    Abstract Broadband fixed wireless access (BFWA) systems have been recognized as an effective first kilometer solution for broadband services to residential and business customers. The large bandwidth available in frequency bands above 20 GHz makes radio systems with very high capacities possible. Users can be offered bit rates in the order of several hundred Mbit/s, making (in terms of capacity) such radio links an alternative to optical fibre in many cases. High capacities BFWA links can be used to serve individual users directly or function as a backbone for lower capacity systems (both wire line and wireless) for local distribution of data. In addition, wireless always offers the freedom of broadband being away from the fixed access point. At mm-wavelengths the signals are sensitive to time dynamic propagation degradation caused by precipitation, vegetation and reflections/multipath from e.g. building surfaces. BFWA need to cope with location and time dependent interference and employ techniques such as interference cancellation and adaptive modulation and coding to optimise throughput during varying traffic load conditions. Multiple input multiple output (MIMO) and space-time coding, as well as adaptive (smart) antennas require knowledge of the channel dynamics as well. The objective of this master thesis is to develop a realistic time dynamic channel model for BFWA operating above 20 GHz utilising adaptive physical layer techniques. The channel model developed represents the time varying wideband channel impulse response including degradations due to multipath propagation, rain attenuation and vegetation fading. The channel model is suitable for simulating mitigation techniques for interference between base stations as well as adaptive modulation and coding techniques. The Maseng-Bakken statistical dynamic model of rain attenuation was adapted to model the rain attenuation. The dynamic vegetation effect was modelled as Nakagami-Rice distribution with K-factor depending on wind speed. A generic tapped delay line model was developed, in which the number of taps depend on maximum tap delay. This thesis is based on work in the project BROADWAN (www.broadwan.org), partly funded under the Information Society Technologies (IST) priority of the European Commission Sixth Framework Program.
    • 

    corecore