45,861 research outputs found

    Covariant EBK quantization of the electromagnetic two-body problem

    Full text link
    We discuss a method to transform the covariant Fokker action into an implicit two-degree-of-freedom Hamiltonian for the electromagnetic two-body problem with arbitrary masses. This dynamical system appeared 100 years ago and it was popularized in the 1940's by the still incomplete Wheeler and Feynman program to quantize it as a means to overcome the divergencies of perturbative QED. Our finite-dimensional implicit Hamiltonian is closed and involves no series expansions. The Hamiltonian formalism is then used to motivate an EBK quantization based on the classical trajectories with a non-perturbative formula that predicts energies free of infinities.Comment: 21 page

    Welfare and Distributional Effects of Road Pricing Schemes for Metropolitan Washington, DC

    Get PDF
    Economists have long advocated congestion pricing as an efficient way of allocating scarce roadway capacity. However, with a few exceptions, congestion tolls are rarely used in practice and strongly opposed by the public and elected officials. Although high implementation costs and privacy issues are alleviated as appropriate technologies are developed, the concerns that congestion pricing will adversely affect low-income travelers remain. In this paper, we use a strategic transportation planning model calibrated for the Washington, DC, metropolitan area to compare the welfare and distributional effects of three pricing schemes: value pricing (HOT lanes), limited congestion pricing, and comprehensive congestion pricing. We find that social welfare gains from HOT lanes amount to three-quarters of those from the comprehensive road pricing. At the same time, a HOT lanes policy turns out to be much more equitable than other road pricing schemes, with all income groups strictly benefiting even before the toll revenue is recycled.traffic congestion, congestion pricing, value pricing, HOT lanes, HOV lanes

    Resource Control for Synchronous Cooperative Threads

    Get PDF
    We develop new methods to statically bound the resources needed for the execution of systems of concurrent, interactive threads. Our study is concerned with a \emph{synchronous} model of interaction based on cooperative threads whose execution proceeds in synchronous rounds called instants. Our contribution is a system of compositional static analyses to guarantee that each instant terminates and to bound the size of the values computed by the system as a function of the size of its parameters at the beginning of the instant. Our method generalises an approach designed for first-order functional languages that relies on a combination of standard termination techniques for term rewriting systems and an analysis of the size of the computed values based on the notion of quasi-interpretation. We show that these two methods can be combined to obtain an explicit polynomial bound on the resources needed for the execution of the system during an instant. As a second contribution, we introduce a virtual machine and a related bytecode thus producing a precise description of the resources needed for the execution of a system. In this context, we present a suitable control flow analysis that allows to formulte the static analyses for resource control at byte code level

    Fluid-structure interaction simulation of pulse propagation in arteries : numerical pitfalls and hemodynamic impact of a local stiffening

    Get PDF
    When simulating the propagation of a pressure pulse in arteries, the discretization parameters (i.e. the time step size and the grid size) need to be chosen carefully in order to avoid a decrease in amplitude of the traveling wave due to numerical dissipation. In this paper the effect of numerical dissipation is examined using a numerical fluid-structure interaction (FSI) model of the pulse propagation in an artery. More insight in the influence of the temporal and spatial resolution of the wave on the results of these simulations is gained using an analytical study in which the scalar linear one-dimensional transport equation is considered. Although this model does not take into account the full complexity of the problem under consideration, the results can be used as a guidance for the selection of the numerical parameters. Furthermore, this analysis illustrates the difference in accuracy that can be obtained using a second-order implicit time integration scheme instead of a first-order scheme. The results from the analytical and numerical studies are subsequently used to determine the settings necessary to obtain a grid and time step converged simulation of the wave propagation and reflection in a simplified model of an aorta with repaired aortic coarctation. This FSI model allows to study the hemodynamic impact of a stiff segment and demonstrates that the presence of a stiff segment has an important impact on a short pressure pulse, but has almost no influence on a physiological pressure pulse. This phenomenon is explained by analyzing the reflections induced by the stiff segment

    Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations

    Get PDF
    Micronutrient malnutrition afflicts over three billion peopleworldwide and the numbers are continuously increasing. Developing genetically micronutrientenriched cereals, which are the predominant source of human dietary, is essential to alleviate malnutrition worldwide. Wheat chromosome 6B derived from wild emmerwheat [Triticum turgidum ssp. dicoccoides (Körn.) Thell] was previously reported to be a source for high Zn concentration in the grain. In the present study, recombinant chromosome substitution lines (RSLs), previously constructed for genetic and physical maps of Gpc-B1 (a 250-kb locus affecting grain protein concentration), were used to identify the effects of the Gpc-B1 locus on grain micronutrient concentrations. RSLs carrying the Gpc-B1 allele of T. dicoccoides accumulated on average 12% higher concentration of Zn, 18% higher concentration of Fe, 29% higher concentration of Mn and 38% higher concentration of protein in the grain as compared with RSLs carrying the allele from cultivated wheat (Triticum durum). Furthermore, the high grain Zn, Fe and Mn concentrations were consistently expressed in five different environments with an absence of genotype by environment interaction. The results obtained in the present study also confirmed the previously reported effect of the wild-type allele of Gpc-B1 on earlier senescence of flag leaves. We suggest that the Gpc-B1 locus is involved in more efficient remobilization of protein, zinc, iron and manganese from leaves to the grains, in addition to its effect on earlier senescence of the green tissues
    • …
    corecore