2,731 research outputs found

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Wideband and UWB antennas for wireless applications. A comprehensive review

    Get PDF
    A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB) antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible), and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc.) and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems

    Performance evaluation of broadband fixed wireless system based on IEEE 802.16

    Get PDF
    Fixed Wireless Access systems operating below 11 GHz have the potential to provide broadband wireless access for non line-of-sight operation. In this paper the performance of a typical broadband fixed wireless system based on the IEEE 802.16-2004 specifications is determined. A scenario for business applications with outdoor customer premises equipment is investigated in the 3.5 GHz frequency band. Different path loss models and terrain types are considered. Coverage and throughput in a sector are determined for this business scenario

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Contributions to channel modelling and performance estimation of HAPS-based communication systems regarding IEEE Std 802.16TM

    Get PDF
    New and future telecommunication networks are and will be broadband type. The existing terrestrial and space radio communication infrastructures might be supplemented by new wireless networks that make and will make use of aeronautics-technology. Our study/contribution is referring to radio communications based on radio stations aboard a stratospheric platform named, by ITU-R, HAPS (High Altitude Platform Station). These new networks have been proposed as an alternative technology within the ITU framework to provide various narrow/broadband communication services. With the possibility of having a payload for Telecommunications in an aircraft or a balloon (HAPS), it can be carried out radio communications to provide backbone connections on ground and to access to broadband points for ground terminals. The latest implies a complex radio network planning. Therefore, the radio coverage analysis at outdoors and indoors becomes an important issue on the design of new radio systems. In this doctoral thesis, the contribution is related to the HAPS application for terrestrial fixed broadband communications. HAPS was hypothesised as a quasi-static platform with height above ground at the so-called stratospheric layer. Latter contribution was fulfilled by approaching via simulations the outdoor-indoor coverage with a simple efficient computational model at downlink mode. This work was assessing the ITU-R recommendations at bands recognised for the HAPS-based networks. It was contemplated the possibility of operating around 2 GHz (1820 MHz, specifically) because this band is recognised as an alternative for HAPS networks that can provide IMT-2000 and IMT-Advanced services. The global broadband radio communication model was composed of three parts: transmitter, channel, and receiver. The transmitter and receiver parts were based on the specifications of the IEEE Std 802.16TM-2009 (with its respective digital transmission techniques for a robust-reliable link), and the channel was subjected to the analysis of radio modelling at the level of HAPS and terrestrial (outdoors plus indoors) parts. For the channel modelling was used the two-state characterisation (physical situations associated with the transmitted/received signals), the state-oriented channel modelling. One of the channel-state contemplated the environmental transmission situation defined by a direct path between transmitter and receiver, and the remaining one regarded the conditions of shadowing. These states were dependent on the elevation angle related to the ray-tracing analysis: within the propagation environment, it was considered that a representative portion of the total energy of the signal was received by a direct or diffracted wave, and the remaining power signal was coming by a specular wave, to last-mentioned waves (rays) were added the scattered and random rays that constituted the diffuse wave. At indoors case, the variations of the transmitted signal were also considering the following matters additionally: the building penetration, construction material, angle of incidence, floor height, position of terminal in the room, and indoor fading; also, these indoors radiocommunications presented different type of paths to reach the receiver: obscured LOS, no LOS (NLOS), and hard NLOS. The evaluation of the feasible performance for the HAPS-to-ground terminal was accomplished by means of thorough simulations. The outcomes of the experiment were presented in terms of BER vs. Eb/N0 plotting, getting significant positive conclusions for these kind of system as access network technology based on HAPS

    Performance Study of Mobile TV over Mobile WiMAX Considering Different Modulation and Coding Techniques

    Full text link
    With the advent of the wide-spread use of smart phones, video streaming over mobile wireless networks has suddenly taken a huge surge in recent years. Considering its enormous potential, mobile WiMAX is emerging as a viable technology for mobile TV which is expected to become of key importance in the future of mobile indus- try. In this paper, a simulation performance study of Mobile TV over mobile WiMAX is conducted with different types of adaptive modulation and coding taking into account key system and environment parameters which include the variation in the speed of the mobile, path-loss, scheduling service classes with the fixed type of mod- ulations. Our simulation has been conducted using OPNET simulation. Simulation results show that dynamic adaptation of modulation and coding schemes based onchannel conditions can offer considerably more en- hanced QoS and at the same time reduce the overall bandwidthof the system.Comment: 12 pages, 9 figures. arXiv admin note: substantial text overlap with arXiv:1312.7442; and text overlap with arXiv:1005.0976 by other author

    信頼性の高い大容量公共用移動通信システムを実現するためのソフトウェア無線およびコグニティブ無線に関する研究

    Get PDF
    Public safety mobile wireless communication systems (PMCSs) are widely used by public safety personnel, such as firefighters and police, as well as local governments. PMCSs are crucial to protect safety and security of communities. Conventional PMCSs effectively cover underpopulated areas as well as urban areas by employing long-zone scheme. Since the PMCSs can cover areas that are not covered by commercial cellule systems, they play the important role as the only communication tool. Moreover, the conventional PMCSs have enhanced robustness and reliability. The conventional PMCSs can keep their services even if backbone lines are cut off. In contrast, short-zone scheme systems cannot offer stable and wide service area without backbone line connection. For example, the Great East Japan Earthquake in Japan, police mobile communication systems had kept their functions while cellular phones became disabled. PMCSs are required to be quite high robustness and reliability in order to save human life. Recently, conventional PMCSs are required to realize further expansion of service areas and high speed transmission although they have stably provided users with wide service areas so far. Nowadays, in order to solve complicated public affair quickly, more stable service areas and broadband communication are required. Compared with conventional PMCSs in urban areas, commercial wireless mobile communication systems (CWMCSs) such as cellular systems supply stable service areas and broadband communication in times of peace. In accordance with development of wireless technology, PMCSs need to keep pace with CWMCSs. However, conventional PMCSs can hardly realize further stable service areas and high speed transmission because of large-zone scheme. In terms of realization of further stable service areas, no-service areas cannot be eliminated easily. This is because no-service areas are mostly attributed to shadowing; in large-zone scheme, a no-service area that must essentially be covered by a certain base station is seldom covered by other neighboring base stations. Although new allocation of base stations is fundamental answer to solve no-service area problem in PMCSs, building new base stations of PMCSs that are not used for a commercial purpose is restricted by national and local budget. Realization of high speed transmission of PMCSs is also difficult because of large-zone scheme. To realize high speed transmission, increase of transmit power or shrinking of service area coverage is required to compensate Signal to Noise Power Ratio (SNR) deterioration caused by expanding bandwidth. Increase of transmission power of mobile station used in large-zone scheme systems is almost impossible because transmission power of mobile station is originally high. Thus, shrinking of service areas is necessary for high speed communication. Currently, to realize high speed transmission, next generation broadband PMCSs (BPMCSs) employing short-or middle-zone scheme are being developed. In the 3GPP, it is considered that the Long Term Evolution (LTE) is used for communication of public safety. In Japan, National Institute of Information and Communications Technology (NICT) has researched and developed Public Broadband Wireless Communication System (PBWCS), which employs 200MHz as carrier frequency. The PBWCS has already been equipped in national police agency in Japan. However, we consider that the conventional narrowband PMCSs (NPM-CSs) are not replaced with the BPMCSs completely. This is because the BPMCSs cannot cover all the areas that the conventional NPM-CSs have covered. Moreover, there are problems of robustness and reliability when accidents happen. Hence, users of PMCSs will utilize both of NPMCSs and BPMCSs in accordance with the situation. In this case, users equipping several terminals feel inconvenient and also radio resources are not used effectively. The best solution to realize optimal PMCSs is employing heterogeneous cognitive radio (HCR) for PMCSs. By applying the HCR to PMCSs, service areas expansion and high speed transmission in PM-CSs will be realized effectively. We propose an integrated system combining NPMCSs with CWMCSs and BPMCSs to make communication quality of the PMCSs improve. The proposed HCR recognizes communication conditions of several systems and then provides PMCS\u27s users with optimal communication quality. Although software defined radio techniques (SDR) are ideal to operate cognitive radio more flexibly, we deal with HCR mainly to realize combined systems in this thesis. We study advantages, problems, and their solution to realize the HCR for PMCSs. Firstly, we research service area expansion of NPMCSs using HCR. The proposed HCR is utilized for stabilization of NPMCS\u27s service area. If communication quality of a NPMCS deteriorates owing to shadowing, the proposed HCR terminal obtains a part of NPMCS\u27s data called subsidiary information (SI) from CWMCSs or BPMCSs. The proposed HCR terminal can improve PMCS\u27s bit error rate (BER) performance by combining the SI with received signals of the NPMCS and then decoding the combined signals using forward error correction (FEC). Since convolutional codes are often used in FEC of NPMCSs, we consider BER improvement methods of the convolutional code. We derive modified Viterbi algorithm from maximum likelihood sequence estimation (MLSE) of the combined signals. Moreover, we introduce the distance spectrum to evaluate characteristics of the convolutional codes. The distance spectrum is used for estimating improvement of BER performances. Next, we consider synchronization methods to realize the proposed HCR. In the HCR, there are two types of synchronization method; one is the self-synchronization method to synchronize each system itself. The other is the co-synchronization method to combine different systems. In this thesis, we consider self-synchronization methods of NPMCSs mainly. This is because the HCR aims to improve communication quality of NPMCSs equipping conventional self-synchronization methods that are not probably available in low SNR environments. In this environment, since NPMCSs can hardly obtain their self-synchronization alone, powerful self-synchronization methods using HCR techniques are required. We propose two synchronization methods that are utilization of global portioning system (GPS) signals and utilization of the SI, respectively. The synchronization methods utilizing GPS signals can acquire timing synchronization. To obtain timing synchronization, the proposed HCR acquires accurate time and own location using the GPS signals. The HCR also gets the location of base stations and the frame timing by making the SI convey their information. Since the HCR can know accurate time and distance between the base station and the HCR, synchronization timing can be calculated. However, in GPS based method, preciseness of timing synchronization may be deteriorated by measurement error of GPS signals, diffraction caused by mountains, and propagation delay caused by reection. For this reason, we consider a mitigation method of the timing error and then evaluate BER performances using computer simulation. Moreover, we propose a SI based synchronization method that can obtain timing synchronization without GPS signals. The proposed method is employed when a NPMCS uses differential coded π/4 shift QPSK as the modulation scheme. The notable feature of the proposed method is to convey the phase rotation of the π/4 shift QPSK as the SI. The HCR can forecast PMCS\u27s envelopes from the obtained SI and then obtain the timing synchronization by correlating the forecasted envelopes with real received envelopes. Since the proposed method can also be used for co-synchronization and BER improvement, CWMCS\u27s resource consumption to convey the SI is suppressed. Finally, we consider HCRs combining several PMCSs. In this thesis, the combination of NPMCSs and the combination of a NPMCS and a BPMCS are researched. In the combination of NPMCSs, we consider that several PMCSs are integrated by SDR. In the combination of a NPMCS and a BPMCS, we propose site diversity based on HCR to improve uplink communication quality of the BPMCS. In this diversity, since uplink interference must be avoided, we employ combination of the adaptive array and HCR techniques. Moreover, we propose information compression methods for narrow band backbone lines so that received data can be conveyed to head office with little BER deterioration. PMCSs will have played an important role to ensure social safety. In the thesis, we consider the one of the next generation PMCSs employing SDR and HCR. Using this research, we can obtain a direction of optimal PMCSs. The next step that we need to perform is to apply our proposed method to actual radio systems. We must continue this research so that high reliable and compact PMCSs can be realized.電気通信大学201
    corecore