3,729 research outputs found

    A correctness criterion for asynchronous circuit validation and optimization

    Get PDF
    technical reportIn order to reason about the correctness of asynchronous circuit implementations and specifications, Dill has developed a variant of trace theory [1]. Trace theory describes the behavior of an asynchronous circuit by representing its possible executions as strings called "traces" A useful relation defined in this theory is called conformance which holds when one trace specification can be safely substituted for another. We propose a new relation in the context of Dill's trace theory called strong conformance. We show that this relation is capable of detecting certain errors in asynchronous circuits that cannot be detected through conformance, Strong conformance also helps to justify circuit optimization rules where a component is replaced by another component having extra capabilities (e.g., it can accept more inputs). The structural operators of Dill's trace theory compose rename and hide - are shown to be monotonic with respect to strong conformance. Experiments are presented using a modified version of Dill's trace theory verifier which implements the check for strong conformance

    Formally-Based Design Evaluation (extended version)

    Get PDF
    This paper investigates specification, verification and test generation for synchronous and asynchronous circuits. The approach is called DILL (Digital Logic in LOTOS). DILL models are discussed for synchronous and asynchronous circuits. Relations for (strong) conformance are defined for verifying a design specification against a high-level specification. An algorithm is also outlined for generating and applying implementation tests based on a specification. Tools have been developed for automated test generation and verification of conformance between an implementation and its specification. The approach is illustrated with various benchmark circuits as case studies

    Some recent asynchronous system design methodologies

    Get PDF
    Journal ArticleWe present an in-depth study of some techniques for asynchronous system design, analysis, and verification. After defining basic terminology, we take one simple example - a four-phase t o two-phase converter - and present its design using (a) classical flow-tables; (b) Signal Transition Graphs of [8]; and (c) Trace Theory of [15]. We then present necessary and sufficient conditions for Delay Insensitivity, proposed by [38], and illustrate it on our example. Finally, we present the work of [13] on the verification of asynchronous circuits, and illustrate it on the circuits derived in the paper. The following points are emphasized: (i) presentation of techniques at more depth than in a general survey; (ii) illustration of all t h e aspects discussed on a common example; (hi) comparative study of the works presented. Many interesting works had to be left out, solely because of our lack of space and time

    Modular Timing Constraints for Delay-Insensitive Systems

    Get PDF
    This paper introduces ARCtimer, a framework for modeling, generating, verifying, and enforcing timing constraints for individual self-timed handshake components. The constraints guarantee that the component’s gate-level circuit implementation obeys the component’s handshake protocol specification. Because the handshake protocols are delayinsensitive, self-timed systems built using ARCtimer-verified components are also delay-insensitive. By carefully considering time locally, we can ignore time globally. ARCtimer comes early in the design process as part of building a library of verified components for later system use. The library also stores static timing analysis (STA) code to validate and enforce the component’s constraints in any self-timed system built using the library. The library descriptions of a handshake component’s circuit, protocol, timing constraints, and STA code are robust to circuit modifications applied later in the design process by technology mapping or layout tools. In addition to presenting new work and discussing related work, this paper identifies critical choices and explains what modular timing verification entails and how it works

    An Asynchronous Microprocessor in Gallium Arsenide

    Get PDF
    In this paper, several techniques for designing asynchronous circuits in Gallium Arsenide are presented. Several new circuits were designed, to implement specific functions necessary to the design of a full microprocessor. A sense-amplifier, a completion tree, and a general circuit structure for operators specified by production rules are introduced. These circuit were used and tested in a variety of designs, including two asynchronous microprocessors and two asynchronous static RAM's. One of the microprocessor runs at over 100 MIPS with a power consumption of 2 Watts

    Timed circuit verification using TEL structures

    Get PDF
    Journal ArticleAbstract-Recent design examples have shown that significant performance gains are realized when circuit designers are allowed to make aggressive timing assumptions. Circuit correctness in these aggressive styles is highly timing dependent and, in industry, they are typically designed by hand. In order to automate the process of designing and verifying timed circuits, algorithms for their synthesis and verification are necessary. This paper presents timed event/level (TEL) structures, a specification formalism for timed circuits that corresponds directly to gate-level circuits. It also presents an algorithm based on partially ordered sets to make the state-space exploration o f TEL structures more tractable. The combination of the new specification method and algorithm significantly improves efficiency for gate-level timing verification. Results on a number of circuits, including many from the recently published gigahertz unit Test Site (guTS) processor from IBM indicate that modules of significant size can be verified using a level of abstraction that preserves the interesting timing properties of the circuit. Accurate circuit level verification allows the designer to include less margin in the design, which can lead to increased performance

    Formal verification of safety properties in timed circuits

    Get PDF
    The incorporation of timing makes circuit verification computationally expensive. This paper proposes a new approach for the verification of timed circuits. Rather than calculating the exact timed stare space, a conservative overestimation that fulfills the property under verification is derived. Timing analysis with absolute delays is efficiently performed at the level of event structures and transformed into a set of relative timing constraints. With this approach, conventional symbolic techniques for reachability analysis can be efficiently combined with timing analysis. Moreover the set of timing constraints used to prove the correctness of the circuit can also be reported for backannotation purposes. Some preliminary results obtained by a naive implementation of the approach show that systems with more than 10/sup 6/ untimed states can be verified.Peer ReviewedPostprint (published version

    Efficient verification of hazard-freedom in gate-level timed asynchronous circuits

    Get PDF
    Journal ArticleAbstract-This paper presents an efficient method for verifying hazard-freedom in gate-level timed asynchronous circuits. Timed circuits are a class of asynchronous circuits that are optimized using explicit timing information. In asynchronous circuits, correct operation requires that there are no hazards in the circuit implementation. Therefore, when designing an asynchronous circuit, each internal node and output of the circuit must be verified for hazard-freedom to ensure correct operation. Current verification algorithms for timed circuits require an explicit state exploration that often results in state explosion for even modest-sized examples. The goal of this paper is to abstract the behavior of internal nodes and utilize this information to make a conservative determination of hazard-freedom for each node in the circuit. Experimental results indicate that this approach is substantially more efficient than existing timing verification tools. These results also indicate that this method scales well for large examples that could not be previously analyzed, in that it is capable of analyzing these circuits in less than a second. While this method is conservative in that some false hazards may be reported, our results indicate that their number is small
    • …
    corecore