1,577 research outputs found

    Personal area technologies for internetworked services

    Get PDF

    Optimal Spectrum Utilization and Flow Controlling In Heterogeneous Network with Reconfigurable Devices

    Get PDF
    Fairness provisioning in heterogeneous networks is a prime issue for high-rate data flow, wherein the inter-connectivity property among different communication devices provides higher throughput. In Hetnet, optimal resource utilization is required for efficient resource usage. Proper resource allocation in such a network led to higher data flow performance for real-time applications. In view of optimal resource allocation, a resource utilization approach for a reconfigurable cognitive device with spectrum sensing capability is proposed in this paper.  The allocation of the data flow rate at device level is proposed for optimization of network fairness in a heterogeneous network.  A dynamic approach of rate-inference optimization is proposed to provide fairness in dynamic data traffic conditions. The simulation results validate the improvement in offered quality in comparison to multi-attribute optimization

    Instantly Decodable Network Coding: From Centralized to Device-to-Device Communications

    Get PDF
    From its introduction to its quindecennial, network coding has built a strong reputation for enhancing packet recovery and achieving maximum information flow in both wired and wireless networks. Traditional studies focused on optimizing the throughput of the system by proposing elaborate schemes able to reach the network capacity. With the shift toward distributed computing on mobile devices, performance and complexity become both critical factors that affect the efficiency of a coding strategy. Instantly decodable network coding presents itself as a new paradigm in network coding that trades off these two aspects. This paper review instantly decodable network coding schemes by identifying, categorizing, and evaluating various algorithms proposed in the literature. The first part of the manuscript investigates the conventional centralized systems, in which all decisions are carried out by a central unit, e.g., a base-station. In particular, two successful approaches known as the strict and generalized instantly decodable network are compared in terms of reliability, performance, complexity, and packet selection methodology. The second part considers the use of instantly decodable codes in a device-to-device communication network, in which devices speed up the recovery of the missing packets by exchanging network coded packets. Although the performance improvements are directly proportional to the computational complexity increases, numerous successful schemes from both the performance and complexity viewpoints are identified

    Rate Control in Video Coding

    Get PDF
    corecore