33,205 research outputs found

    An altruistic cross-layer recovering mechanism for ad hoc wireless networks

    Full text link
    Video streaming services have restrictive delay and bandwidth constraints. Ad hoc networks represent a hostile environment for this kind of real-time data transmission. Emerging mesh networks, where a backbone provides more topological stability, do not even assure a high quality of experience. In such scenario, mobility of terminal nodes causes link breakages until a new route is calculated. In the meanwhile, lost packets cause annoying video interruptions to the receiver. This paper proposes a new mechanism of recovering lost packets by means of caching overheard packets in neighbor nodes and retransmit them to destination. Moreover, an optimization is shown, which involves a video-aware cache in order to recover full frames and prioritize more significant frames. Results show the improvement in reception, increasing the throughput as well as video quality, whereas larger video interruptions are considerably reduced. Copyright © 2014 John Wiley & Sons, Ltd.Arce Vila, P.; Guerri Cebollada, JC. (2015). An altruistic cross-layer recovering mechanism for ad hoc wireless networks. Wireless Communications and Mobile Computing. 15(13):1744-1758. doi:10.1002/wcm.2459S174417581513Li J Blake C De Couto DSJ Lee HI Morris R Capacity of ad hoc wireless networks Proceedings of the 7th Annual International Conference on Mobile Computing and Networks (MobiCom) 2001 61 69Akyildiz, I. F., & Xudong Wang. (2005). A survey on wireless mesh networks. IEEE Communications Magazine, 43(9), S23-S30. doi:10.1109/mcom.2005.1509968Hsu, C.-J., Liu, H.-I., & Seah, W. K. G. (2011). Opportunistic routing – A review and the challenges ahead. Computer Networks, 55(15), 3592-3603. doi:10.1016/j.comnet.2011.06.021Huang, X., Zhai, H., & Fang, Y. (2008). Robust cooperative routing protocol in mobile wireless sensor networks. IEEE Transactions on Wireless Communications, 7(12), 5278-5285. doi:10.1109/t-wc.2008.060680Wieselthier, J. E., Nguyen, G. D., & Ephremides, A. (2001). Mobile Networks and Applications, 6(3), 251-263. doi:10.1023/a:1011478717164Clausen T Jacquet P Optimized Link State Routing Protocol (OLSR), IETF RFC 3626 2003 http://www.rfc-editor.org/rfc/rfc3626.txtMarina, M. K., & Das, S. R. (2006). Ad hoc on-demand multipath distance vector routing. Wireless Communications and Mobile Computing, 6(7), 969-988. doi:10.1002/wcm.432Zhou X Lu Y Ma HG Routing improvement using multiple disjoint paths for ad hoc networks International Conference on Wireless and Optical Communications Networks (IFIP) 2006 1 5Fujisawa H Minami H Yamamoto M Izumi Y Fujita Y Route selection using retransmission packets for video streaming on ad hoc networks IEEE Conference on Radio and Wireless Symposium (RWS) 2006 607 610Badis H Agha KA QOLSR multi-path routing for mobile ad hoc networks based on multiple metrics: bandwidth and delay IEEE 59th Vehicular Technology Conference (VTC) 2004 2181 2184Wu Z Wu J Cross-layer routing optimization for video transmission over wireless ad hoc networks 6th International Conference on Wireless Communications Networks and Mobile Computing (WiCOM) 2010 1 6Schier, M., & Welzl, M. (2012). Optimizing Selective ARQ for H.264 Live Streaming: A Novel Method for Predicting Loss-Impact in Real Time. IEEE Transactions on Multimedia, 14(2), 415-430. doi:10.1109/tmm.2011.2178235Nikoupour M Nikoupour A Dehghan M A cross-layer framework for video streaming over wireless ad-hoc networks 3rd International Conference on Digital Information Management (ICDIM) 2008 340 345Yamamoto R Miyoshi T Distributed retransmission method using neighbor terminals for ad hoc networks Proceedings of the 14th Asia-Pacific Conference on Communications (APCC) 2008 1 5Gravalos I Kokkinos P Varvarigos EA Multi-criteria cooperative energy-aware routing in wireless ad-hoc networks Proceedings of the 9th International Wireless Communications and Mobile Computing Conference (IWCMC) 2013 387 393Abid, R. M., Benbrahim, T., & Biaz, S. (2010). IEEE 802.11s Wireless Mesh Networks for Last-Mile Internet Access: An Open-Source Real-World Indoor Testbed Implementation. Wireless Sensor Network, 02(10), 725-738. doi:10.4236/wsn.2010.210088Yen, Y.-S., Chang, R.-S., & Wu, C.-Y. (2011). A seamless handoff scheme for IEEE 802.11 wireless networks. Wireless Communications and Mobile Computing, 13(2), 157-169. doi:10.1002/wcm.1102Liangzhong Yin, & Guohong Cao. (2006). Supporting cooperative caching in ad hoc networks. IEEE Transactions on Mobile Computing, 5(1), 77-89. doi:10.1109/tmc.2006.15Biswas S Morris R ExOR: opportunistic multi-hop routing for wireless networks Proceedings of ACM SIGCOMM 2005 133 144Chachulski S Jennings M Katti S Katabi D Trading structure for randomness in wireless opportunistic routing Proceedings of ACM SIGCOMM 2007 169 180Kohler E Handley M Floyd S Datagram Congestion Control Protocol (DCCP), IETF RFC 4340 2006 http://www.rfc-editor.org/rfc/rfc4340.txtSchierl, T., Ganger, K., Hellge, C., Wiegand, T., & Stockhammer, T. (2006). SVC-based multisource streaming for robust video transmission in mobile ad hoc networks. IEEE Wireless Communications, 13(5), 96-103. doi:10.1109/wc-m.2006.250365Iera, A., Molinaro, A., Paratore, S. Y., Ruggeri, G., & Zurzolo, A. (2011). Making a mesh router/gateway from a smartphone: Is that a practical solution? Ad Hoc Networks, 9(8), 1414-1429. doi:10.1016/j.adhoc.2011.03.00

    On secure communication in integrated internet and heterogeneous multi-hop wireless networks.

    Get PDF
    Integration of the Internet with a Cellular Network, WMAN, WLAN, and MANET presents an exceptional promise by having co-existence of conventional WWANs/WMANs/WLANs with wireless ad hoc networks to provide ubiquitous communication. We call such integrated networks providing internet accessibility for mobile users as heterogeneous multi-hop wireless networks where the Internet and wireless infrastructure such as WLAN access points (APs) and base stations (BSs) constitute the backbone for various emerging wireless networks (e.g., multi-hop WLAN and ad hoc networks. Earlier approaches for the Internet connectivity either provide only unidirectional connectivity for ad hoc hosts or cause high overhead as well as delay for providing full bi-directional connections. In this dissertation, a new protocol is proposed for integrated Internet and ad hoc networks for supporting bi-directional global connectivity for ad hoc hosts. In order to provide efficient mobility management for mobile users in an integrated network, a mobility management protocol called multi-hop cellular IP (MCIP) has been proposed to provide a micro-mobility management framework for heterogeneous multi-hop network. The micro-mobility is achieved by differentiating the local domain from the global domain. At the same time, the MCIP protocol extends Mobile IP protocol for providing macro-mobility support between local domains either for single hop MSs or multi-hop MSs. In the MCIP protocol, new location and mobility management approaches are developed for tracking mobile stations, paging, and handoff management. This dissertation also provides a security protocol for integrated Internet and MANET to establish distributed trust relationships amongst mobile infrastructures. This protocol protects communication between two mobile stations against the attacks either from the Internet side or from wireless side. Moreover, a secure macro/micro-mobility protocol (SM3P) have been introduced and evaluated for preventing mobility-related attacks either for single-hop MSs or multi-hop MSs. In the proposed SM3P, mobile IP security has been extended for supporting macro-mobility across local domains through the process of multi-hop registration and authentication. In a local domain, a certificate-based authentication achieves the effective routing and micro-mobility protection from a range of potential security threats

    Cluster-based route discovery protocol

    Full text link
    An ad hoc network is a collection of wireless mobile hosts forming a network without the aid of any established infrastructure or centralized administration. In such an environment, it may be necessary for one mobile host to enlist the aid of other hosts in forwarding a packet to its destination due to the limited range of each mobile host\u27s wireless transmissions. Many protocols have been proposed to route packets between the hosts in such a network; The on-demand routing protocol is a well-known method. It establishes the routes and uses them only when a need arises. For wireless communication channels, the problem is further complicated by the mobility of the nodes, which induces structural changes in the routing. So, the mobility management of mobile nodes is important in mobile ad hoc networks; Clustering is a scheme to build a network control structure that increases network availability, reduces the delay in responding to changes in network state, and improves data security. It promotes more efficient use of resources in controlling large dynamic networks. Clustering is crucial for scalability as the performance can be improved by simply adding more nodes to the cluster; This thesis presents a protocol for routing in ad hoc networks that uses ad-hoc on-demand routing and also takes care of the mobility management. The protocol adapts quickly to frequent host movement, yet requires little or no overhead during periods in which hosts move less frequently. Moreover, the protocol routes packets through a dynamically established and nearly optimal path between two wireless nodes. We propose a self-organizing clustering protocol to store the routing data in multiple nodes and to distribute the routing load. It also achieves higher reliability---if a node in a cluster fails, the data is still accessible via other cluster nodes

    Improving Fairness and Utilisation in Ad Hoc Networks

    Get PDF
    Ad hoc networks represent the current de-facto alternative for infrastructure-less environments, due to their self-configuring and resilience characteristics. Ad hoc networks flexibility benefits, such as unrestrained computing, lack of centralisation, and ease of deployment at low costs, are tightly bound with relevant deficiencies such as limited resources and management difficulty. Ad hoc networks witnessed high attention from the research community due to the numerous challenges faced when deploying such a technology in real scenarios. Starting with the nature of the wireless environment, which raises significant transmission issues when compared with the wired counterpart, ad hoc networks require a different approach when addressing the data link problems. Further, the high packet loss due to wireless contention, independent of network congestion, requires a different approach when considering quality of service degradation and unfair channel resources distribution among competing flows. Although these issues have already been considered to some extent by researchers, there is still room to improve quality of service by reducing the effect of packet loss and fairly distributing the medium access among competing nodes. The aim of this thesis is to propose a set of mechanisms to alleviate the effect of packet loss and to improve fairness in ad hoc networks. A transport layer algorithm has been proposed to overcome the effects of hidden node collisions and to reduce the impact of wireless link contention by estimating the four hop delay and pacing packet transmissions accordingly. Furthermore, certain topologies have been identified, in which the standard IEEE 802.11 faces degradation in channel utilisation and unfair bandwidth allocation. Three link layer mechanisms have been proposed to tackle the challenges the IEEE 802.11 faces in the identified scenarios to impose fairness in ad hoc networks through fairly distributing channel resources between competing nodes. These mechanisms are based on monitoring the collision rate and penalising the greedy nodes where no competing nodes can be detected but interference exists, monitoring traffic at source nodes to police access to the channel where only source nodes are within transmission range of each other, and using MAC layer acknowledgements to flag unfair bandwidth allocation in topologies where only the receivers are within transmission range of each other. The proposed mechanisms have been integrated into a framework designed to adapt and to dynamically select which mechanism to adopt, depending on the network topology. It is important to note that the proposed mechanisms and framework are not alternatives to the standard MAC protocol but are an enhancement and are triggered by the failure of the IEEE 802.11 protocol to distribute the channel resources fairly. All the proposed mechanisms have been validated through simulations and the results obtained from the experiments show that the proposed schemes fairly distribute channel resources fairly and outperform the performance of the IEEE 802.11 protocol in terms of channel utilisation as well as fairness

    Comparative of Delay Tolerant Network Routings and Scheduling using Max-Weight, Back Pressure and ACO

    Get PDF
    Network management and Routing is supportively done by performing with the nodes, due to infrastructure-less nature of the network in Ad hoc networks or MANET. The nodes are maintained itself from the functioning of the network, for that reason the MANET security challenges several defects. Routing process and Scheduling is a significant idea to enhance the security in MANET. Other than, scheduling has been recognized to be a key issue for implementing throughput/capacity optimization in Ad hoc networks. Designed underneath conventional (LT) light tailed assumptions, traffic fundamentally faces Heavy-tailed (HT) assumption of the validity of scheduling algorithms. Scheduling policies are utilized for communication networks such as Max-Weight, backpressure and ACO, which are provably throughput optimality and the Pareto frontier of the feasible throughput region under maximal throughput vector. In wireless ad-hoc network, the issue of routing and optimal scheduling performs with time varying channel reliability and multiple traffic streams. Depending upon the security issues within MANETs in this paper presents a comparative analysis of existing scheduling policies based on their performance to progress the delay performance in most scenarios. The security issues of MANETs considered from this paper presents a relative analysis of existing scheduling policies depend on their performance to progress the delay performance in most developments

    MWAHCA: A Multimedia Wireless Ad Hoc Cluster Architecture

    Get PDF
    Wireless Ad hoc networks provide a flexible and adaptable infrastructure to transport data over a great variety of environments. Recently, real-time audio and video data transmission has been increased due to the appearance of many multimedia applications. One of the major challenges is to ensure the quality of multimedia streams when they have passed through a wireless ad hoc network. It requires adapting the network architecture to the multimedia QoS requirements. In this paper we propose a new architecture to organize and manage cluster-based ad hoc networks in order to provide multimedia streams. Proposed architecture adapts the network wireless topology in order to improve the quality of audio and video transmissions. In order to achieve this goal, the architecture uses some information such as each node's capacity and the QoS parameters (bandwidth, delay, jitter, and packet loss). The architecture splits the network into clusters which are specialized in specific multimedia traffic. The real system performance study provided at the end of the paper will demonstrate the feasibility of the proposal.Díaz Santos, JR.; Lloret, J.; Jimenez, JM.; Sendra, S. (2014). MWAHCA: A Multimedia Wireless Ad Hoc Cluster Architecture. Scientific World Journal. 2014. doi:10.1155/2014/913046S2014Lacuesta, R., Lloret, J., Garcia, M., & Peñalver, L. (2010). A Spontaneous Ad Hoc Network to Share WWW Access. EURASIP Journal on Wireless Communications and Networking, 2010(1). doi:10.1155/2010/232083Lloret, J., Garcia, M., Tomás, J., & Boronat, F. (2008). GBP-WAHSN: A Group-Based Protocol for Large Wireless Ad Hoc and Sensor Networks. Journal of Computer Science and Technology, 23(3), 461-480. doi:10.1007/s11390-008-9147-6Yu, J. Y., & Chong, P. H. J. (2005). A survey of clustering schemes for mobile ad hoc networks. IEEE Communications Surveys & Tutorials, 7(1), 32-48. doi:10.1109/comst.2005.1423333Lloret, J., Garcia, M., Bri, D., & Diaz, J. (2009). A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks. Sensors, 9(12), 10513-10544. doi:10.3390/s91210513LEHSAINI, M., GUYENNET, H., & FEHAM, M. (2010). Cluster-based Energy-efficient k-Coverage for Wireless Sensor Networks. Network Protocols and Algorithms, 2(2). doi:10.5296/npa.v2i2.325Zhou, C., & Maxemchuk, N. (2011). Distributed Bottleneck Flow Control in Mobile Ad Hoc Networks. Network Protocols and Algorithms, 3(1). doi:10.5296/npa.v3i1.576Zhang, R., Cai, L., Pan, J., & Shen, X. (Sherman). (2011). Resource management for video streaming in ad hoc networks. Ad Hoc Networks, 9(4), 623-634. doi:10.1016/j.adhoc.2010.08.012Tarique, M. (2010). ISSUES OF LONG-HOP AND SHORT-HOP ROUTING IN MOBILE AD HOC NETWORKS: A COMPREHENSIVE STUDY. Network Protocols and Algorithms, 2(2). doi:10.5296/npa.v2i2.430Abdrabou, A., & Zhuang, W. (2009). Statistical QoS routing for IEEE 802.11 multihop ad hoc networks. IEEE Transactions on Wireless Communications, 8(3), 1542-1552. doi:10.1109/twc.2008.080573Kandris, D., Tsagkaropoulos, M., Politis, I., Tzes, A., & Kotsopoulos, S. (2011). Energy efficient and perceived QoS aware video routing over Wireless Multimedia Sensor Networks. Ad Hoc Networks, 9(4), 591-607. doi:10.1016/j.adhoc.2010.09.00

    Metric Anticipation in Mobile Ad-Hoc Networks

    Get PDF
    International audienceIn this paper, we propose a new method for metric calculations. It aims to improve mobility management in wireless networks. The idea consists in anticipating metric values in order to compensate the delay generated by the measure of the link quality and the routing protocols. As an example, we consider the popular ETX (Expected Transmission Count) metric. We focus on ad-hoc networks, even if our approach could be used in other contexts. We show by simulations that our approach, when well parametrized, allows a Packet Delivery Ratio (PDR) close to 100% when nodes are moving

    Multicast outing protocols and architectures in mobile ad-hoc wireless networks

    Get PDF
    The basic philosophy of personal communication services is to provide user-to-user, location independent communication services. The emerging group communication wireless applications, such as multipoint data dissemination and multiparty conferencing tools have made the design and development of efficient multicast techniques in mobile ad-hoc networking environments a necessity and not just a desire. Multicast protocols in mobile adhoc networks have been an area of active research for the past few years. In this dissertation, protocols and architectures for supporting multicast services are proposed, analyzed and evaluated in mobile ad-hoc wireless networks. In the first chapter, the activities and recent advances are summarized in this work-in-progress area by identifying the main issues and challenges that multicast protocols are facing in mobile ad-hoc networking environments and by surveying several existing multicasting protocols. a classification of the current multicast protocols is presented, the functionality of the individual existing protocols is discussed, and a qualitative comparison of their characteristics is provided according to several distinct features and performance parameters. In the second chapter, a novel mobility-based clustering strategy that facilitates the support of multicast routing and mobility management is presented in mobile ad-hoc networks. In the proposed structure, mobile nodes are organized into nonoverlapping clusters which have adaptive variable-sizes according to their respective mobility. The mobility-based clustering (MBC) approach which is proposed uses combination of both physical and logical partitions of the network (i.e. geographic proximity and functional relation between nodes, such as mobility pattern etc.). In the third chapter, an entropy-based modeling framework for supporting and evaluating the stability is proposed in mobile ad-hoc wireless networks. The basic motivations of the proposed modeling approach stem from the commonality observed in the location uncertainty in mobile ad-hoc wireless networks and the concept of entropy. In the fourth chapter, a Mobility-based Hybrid Multicast Routing (MHMR) protocol suitable for mobile ad-hoc networks is proposed. The MHMR uses the MBC algorithm as the underlying structure. The main features that the proposed protocol introduces are the following: a) mobility based clustering and group based hierarchical structure, in order to effectively support the stability and scalability, b) group based (limited) mesh structure and forwarding tree concepts, in order to support the robustness of the mesh topologies which provides limited redundancy and the efficiency of tree forwarding simultaneously, and c) combination of proactive and reactive concepts which provide the low route acquisition delay of proactive techniques and the low overhead of reactive methods. In the fifth chapter, an architecture for supporting geomulticast services with high message delivery accuracy is presented in mobile ad-hoc wireless networks. Geomulticast is a specialized location-dependent multicasting technique, where messages are multicast to some specific user groups within a specific zone. An analytical framework which is used to evaluate the various geomulticast architectures and protocols is also developed and presented. The last chapter concludes the dissertation

    A multipath energy-conserving routing protocol for wireless ad hoc networks lifetime improvement

    Get PDF
    Ad hoc networks are wireless mobile networks that can operate without infrastructure and without centralized network management. Traditional techniques of routing are not well adapted. Indeed, their lack of reactivity with respect to the variability of network changes makes them difficult to use. Moreover, conserving energy is a critical concern in the design of routing protocols for ad hoc networks, because most mobile nodes operate with limited battery capacity, and the energy depletion of a node affects not only the node itself but also the overall network lifetime. In all proposed single-path routing schemes a new path-discovery process is required once a path failure is detected, and this process causes delay and wastage of node resources. A multipath routing scheme is an alternative to maximize the network lifetime. In this paper, we propose an energy-efficient multipath routing protocol, called AOMR-LM (Ad hoc On-demand Multipath Routing with Lifetime Maximization), which preserves the residual energy of nodes and balances the consumed energy to increase the network lifetime. To achieve this goal, we used the residual energy of nodes for calculating the node energy level. The multipath selection mechanism uses this energy level to classify the paths. Two parameters are analyzed: the energy threshold beta and the coefficient alpha. These parameters are required to classify the nodes and to ensure the preservation of node energy. Our protocol improves the performance of mobile ad hoc networks by prolonging the lifetime of the network. This novel protocol has been compared with other protocols: AOMDV and ZD-AOMDV. The protocol performance has been evaluated in terms of network lifetime, energy consumption, and end-to-end delay
    • …
    corecore