34 research outputs found

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum

    Three Risky Decades: A Time for Econophysics?

    Get PDF
    Our Special Issue we publish at a turning point, which we have not dealt with since World War II. The interconnected long-term global shocks such as the coronavirus pandemic, the war in Ukraine, and catastrophic climate change have imposed significant humanitary, socio-economic, political, and environmental restrictions on the globalization process and all aspects of economic and social life including the existence of individual people. The planet is trapped—the current situation seems to be the prelude to an apocalypse whose long-term effects we will have for decades. Therefore, it urgently requires a concept of the planet's survival to be built—only on this basis can the conditions for its development be created. The Special Issue gives evidence of the state of econophysics before the current situation. Therefore, it can provide excellent econophysics or an inter-and cross-disciplinary starting point of a rational approach to a new era

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 22nd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2019, which took place in Prague, Czech Republic, in April 2019, held as part of the European Joint Conference on Theory and Practice of Software, ETAPS 2019. The 29 papers presented in this volume were carefully reviewed and selected from 85 submissions. They deal with foundational research with a clear significance for software science

    Notes on Theory of Distributed Systems

    Full text link
    Notes for the Yale course CPSC 465/565 Theory of Distributed Systems

    New Directions for Contact Integrators

    Get PDF
    Contact integrators are a family of geometric numerical schemes which guarantee the conservation of the contact structure. In this work we review the construction of both the variational and Hamiltonian versions of these methods. We illustrate some of the advantages of geometric integration in the dissipative setting by focusing on models inspired by recent studies in celestial mechanics and cosmology.Comment: To appear as Chapter 24 in GSI 2021, Springer LNCS 1282

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Foundations of Online Structure Theory II: The Operator Approach

    Full text link
    We introduce a framework for online structure theory. Our approach generalises notions arising independently in several areas of computability theory and complexity theory. We suggest a unifying approach using operators where we allow the input to be a countable object of an arbitrary complexity. We give a new framework which (i) ties online algorithms with computable analysis, (ii) shows how to use modifications of notions from computable analysis, such as Weihrauch reducibility, to analyse finite but uniform combinatorics, (iii) show how to finitize reverse mathematics to suggest a fine structure of finite analogs of infinite combinatorial problems, and (iv) see how similar ideas can be amalgamated from areas such as EX-learning, computable analysis, distributed computing and the like. One of the key ideas is that online algorithms can be viewed as a sub-area of computable analysis. Conversely, we also get an enrichment of computable analysis from classical online algorithms

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF
    corecore