56 research outputs found

    Dense point sets have sparse Delaunay triangulations

    Full text link
    The spread of a finite set of points is the ratio between the longest and shortest pairwise distances. We prove that the Delaunay triangulation of any set of n points in R^3 with spread D has complexity O(D^3). This bound is tight in the worst case for all D = O(sqrt{n}). In particular, the Delaunay triangulation of any dense point set has linear complexity. We also generalize this upper bound to regular triangulations of k-ply systems of balls, unions of several dense point sets, and uniform samples of smooth surfaces. On the other hand, for any n and D=O(n), we construct a regular triangulation of complexity Omega(nD) whose n vertices have spread D.Comment: 31 pages, 11 figures. Full version of SODA 2002 paper. Also available at http://www.cs.uiuc.edu/~jeffe/pubs/screw.htm

    Leibniz International Proceedings in Information, LIPIcs

    Get PDF
    Smallest enclosing spheres of finite point sets are central to methods in topological data analysis. Focusing on Bregman divergences to measure dissimilarity, we prove bounds on the location of the center of a smallest enclosing sphere. These bounds depend on the range of radii for which Bregman balls are convex

    Courbure discrÚte : théorie et applications

    Get PDF
    International audienceThe present volume contains the proceedings of the 2013 Meeting on discrete curvature, held at CIRM, Luminy, France. The aim of this meeting was to bring together researchers from various backgrounds, ranging from mathematics to computer science, with a focus on both theory and applications. With 27 invited talks and 8 posters, the conference attracted 70 researchers from all over the world. The challenge of finding a common ground on the topic of discrete curvature was met with success, and these proceedings are a testimony of this wor

    Topological Hierarchies and Decomposition: From Clustering to Persistence

    Get PDF
    Hierarchical clustering is a class of algorithms commonly used in exploratory data analysis (EDA) and supervised learning. However, they suffer from some drawbacks, including the difficulty of interpreting the resulting dendrogram, arbitrariness in the choice of cut to obtain a flat clustering, and the lack of an obvious way of comparing individual clusters. In this dissertation, we develop the notion of a topological hierarchy on recursively-defined subsets of a metric space. We look to the field of topological data analysis (TDA) for the mathematical background to associate topological structures such as simplicial complexes and maps of covers to clusters in a hierarchy. Our main results include the definition of a novel hierarchical algorithm for constructing a topological hierarchy, and an implementation of the MAPPER algorithm and our topological hierarchies in pure Python code as well as a web app dashboard for exploratory data analysis. We show that the algorithm scales well to high-dimensional data due to the use of dimensionality reduction in most TDA methods, and analyze the worst-case time complexity of MAPPER and our hierarchical decomposition algorithm. Finally, we give a use case for exploratory data analysis with our techniques

    Geometric optimization and querying : exact & approximate

    Get PDF
    This thesis has two main parts. The first part deals with the stage illumination problem. Given a stage represented by a line segment L and a set of lightsources represented by a set of points S in the plane, assign powers to the lightsources such that every point on the stage receives a sufficient amount, e.g. one unit, of light while minimizing the overall power consumption. By assuming that the amount of light arriving from a fixed lightsource decreases rapidly with the distance from the lightsource, this becomes an interesting geometric optimization problem. We present different solutions, based on convex optimization, discretization and linear programming, as well as a purely combinatorial approximation algorithm. Some experimental results are also provided. In the second part of this thesis, we are concerned with two different geometric problems whose solutions are based on the construction of a data structure that would allow for efficient queries. The central idea of our data structures is the well-separated pair decomposition. The first problem we address is the k-hop restricted shortest path under the power-euclidean distance function. Given a set P of n points in the plane and the distance function jpqjd +Cp for some constant d > 1, nonnegative offset cost Cp and p;q 2 P, where jpqj denotes the Euclidean distance between p and q, we consider the problem of finding paths between any pair of points that minimize the lenght of the path and do not use more than some constant number k of hops. Known exact algorithms for this problem required W(nlogn) per query pair (p;q). We relax the exactness requirement and only require approximate (1+e) solutions which allows us to derive schemes which guarantee constant query time using linear space and O(nlogn) preprocessing time. The dependence on e is polynomial in 1=e. We also develop a tool that might be of independent interest: For any pair of points p;q 2 P report in constant time the cluster pair (A;B) representing (p;q) in a well-separated pair decomposition of P. The second problem in this part is so-called cone-restricted nearest neighbor. For a given point set in Euclidean space we consider the problem of finding (approximate) nearest neighbors of a query point but restricting only to points that lie within a fixed cone with apex at the query point. We investigate the structure of the Voronoi diagram induced by this notion of proximity and present approximate and exact data structures for answering cone-restricted nearest neighbor queries. In particular, we develop an approximate Voronoi diagram of size O((n=ed) log(1=e)) that can be used to answer cone-restricted nearest neighbor queries in O(log(n=e)) time.Diese Arbeit besteht aus zwei Teilen. Der erste Teil behandelt das Stage Illumination Problem. Hierbei möchte man eine BĂŒhne, die durch ein GeradenstĂŒck reprĂ€sentiert ist, durch Lichtquellen, die durch Punkte in der Ebene reprĂ€sentiert sind, so beleuchten, dass jeder Punkt der BĂŒhne genĂŒgend Licht erhĂ€lt und dabei möglichst wenig Energie verbrauchen. Wenn man annimmt, dass die LichtintensitĂ€t stark mit der Entfernung zur Lichtquelle abnimmt, so stellt dies ein interesanntes geometrisches Optimierungsproblem dar. Wir geben verschiedene Lösungen an, die sowohl auf konvexer Optimierung, Diskretisierung und Linearer Programmierung basieren, als auch einen kombinatorischen Approximationsalgorithmus. Es werden auch experimentelle Resultate angegeben. Im zweiten Teil dieser Arbeit behandeln wir zwei verschiedene geometrische Probleme, deren Lösungen auf einer Datenstruktur basieren, die effiziente Anfragen beantworten kann. Die zentrale Idee unserer Datenstruktur ist die well-separated pair decomposition WSPD. Das erste Problem, das wir ansprechen ist das k-hop restricted shortest path under the power-euclidean distance function. FĂŒr n Punkte in der Ebene möchte man den kĂŒrzesten Pfad zwischen zwei beliebigen Punkten finden, der nicht mehr als k Kanten benötigt. Bekannte exakte Algorithmen fĂŒr dieses Problem benötigen W(nlogn) Zeit pro Anfrage (p;q). Wir lockern die Exaktheitsforderung und verlangen nur eine (1+e)-Approximation. Dies erlaubt uns eine Methode zu entwickeln, die konstante Zeit pro Anfrage garaniert und nur linearen Platz benötigt bei einer Vorverarbeitungszeit von O(nlogn). Die AbhĂ€ngigkeit von e ist polynomiell in 1=e. Außerdem entwickeln wir eine Methode, die davon unabhĂ€ngig von Interesse ist. FĂŒr ein Punktepaar p;q 2 P bestimmen wir in konstanter Zeit das Cluster-paar (A;B), das (p;q) in einer WSPD von P bestimmt. Das zweite Problem in diesem Teil ist das sogenannte cone-restricted nearest neighbor problem. FĂŒr eine gegebene Menge von Punkten im Euklidischen Raum betrachten wir das Problem den nĂ€chsten Nachbarpunkt zu bestimmen, der in einem Kegel liegt, dessen Spitze ein beliebiger Anfragepunkt ist. Wir untersuchen das dazugehörige Voronoi- Diagramm und entwickeln effiziente Datenstrukturen sowohl fĂŒr exakte als auch fĂŒr approximative cone-restricted nearest neighbor-Anfragen. Im speziellen entwickeln wir ein approximatives Voronoi-Diagramm der GrĂ¶ĂŸe O((n=ed) log(1=e)), das dazu benutzt werden kann, Anfragen in der Zeit O(log(n=e)) zu beantworten

    Geometric optimization and querying : exact & approximate

    Get PDF
    This thesis has two main parts. The first part deals with the stage illumination problem. Given a stage represented by a line segment L and a set of lightsources represented by a set of points S in the plane, assign powers to the lightsources such that every point on the stage receives a sufficient amount, e.g. one unit, of light while minimizing the overall power consumption. By assuming that the amount of light arriving from a fixed lightsource decreases rapidly with the distance from the lightsource, this becomes an interesting geometric optimization problem. We present different solutions, based on convex optimization, discretization and linear programming, as well as a purely combinatorial approximation algorithm. Some experimental results are also provided. In the second part of this thesis, we are concerned with two different geometric problems whose solutions are based on the construction of a data structure that would allow for efficient queries. The central idea of our data structures is the well-separated pair decomposition. The first problem we address is the k-hop restricted shortest path under the power-euclidean distance function. Given a set P of n points in the plane and the distance function jpqjd +Cp for some constant d > 1, nonnegative offset cost Cp and p;q 2 P, where jpqj denotes the Euclidean distance between p and q, we consider the problem of finding paths between any pair of points that minimize the lenght of the path and do not use more than some constant number k of hops. Known exact algorithms for this problem required W(nlogn) per query pair (p;q). We relax the exactness requirement and only require approximate (1+e) solutions which allows us to derive schemes which guarantee constant query time using linear space and O(nlogn) preprocessing time. The dependence on e is polynomial in 1=e. We also develop a tool that might be of independent interest: For any pair of points p;q 2 P report in constant time the cluster pair (A;B) representing (p;q) in a well-separated pair decomposition of P. The second problem in this part is so-called cone-restricted nearest neighbor. For a given point set in Euclidean space we consider the problem of finding (approximate) nearest neighbors of a query point but restricting only to points that lie within a fixed cone with apex at the query point. We investigate the structure of the Voronoi diagram induced by this notion of proximity and present approximate and exact data structures for answering cone-restricted nearest neighbor queries. In particular, we develop an approximate Voronoi diagram of size O((n=ed) log(1=e)) that can be used to answer cone-restricted nearest neighbor queries in O(log(n=e)) time.Diese Arbeit besteht aus zwei Teilen. Der erste Teil behandelt das Stage Illumination Problem. Hierbei möchte man eine BĂŒhne, die durch ein GeradenstĂŒck reprĂ€sentiert ist, durch Lichtquellen, die durch Punkte in der Ebene reprĂ€sentiert sind, so beleuchten, dass jeder Punkt der BĂŒhne genĂŒgend Licht erhĂ€lt und dabei möglichst wenig Energie verbrauchen. Wenn man annimmt, dass die LichtintensitĂ€t stark mit der Entfernung zur Lichtquelle abnimmt, so stellt dies ein interesanntes geometrisches Optimierungsproblem dar. Wir geben verschiedene Lösungen an, die sowohl auf konvexer Optimierung, Diskretisierung und Linearer Programmierung basieren, als auch einen kombinatorischen Approximationsalgorithmus. Es werden auch experimentelle Resultate angegeben. Im zweiten Teil dieser Arbeit behandeln wir zwei verschiedene geometrische Probleme, deren Lösungen auf einer Datenstruktur basieren, die effiziente Anfragen beantworten kann. Die zentrale Idee unserer Datenstruktur ist die well-separated pair decomposition WSPD. Das erste Problem, das wir ansprechen ist das k-hop restricted shortest path under the power-euclidean distance function. FĂŒr n Punkte in der Ebene möchte man den kĂŒrzesten Pfad zwischen zwei beliebigen Punkten finden, der nicht mehr als k Kanten benötigt. Bekannte exakte Algorithmen fĂŒr dieses Problem benötigen W(nlogn) Zeit pro Anfrage (p;q). Wir lockern die Exaktheitsforderung und verlangen nur eine (1+e)-Approximation. Dies erlaubt uns eine Methode zu entwickeln, die konstante Zeit pro Anfrage garaniert und nur linearen Platz benötigt bei einer Vorverarbeitungszeit von O(nlogn). Die AbhĂ€ngigkeit von e ist polynomiell in 1=e. Außerdem entwickeln wir eine Methode, die davon unabhĂ€ngig von Interesse ist. FĂŒr ein Punktepaar p;q 2 P bestimmen wir in konstanter Zeit das Cluster-paar (A;B), das (p;q) in einer WSPD von P bestimmt. Das zweite Problem in diesem Teil ist das sogenannte cone-restricted nearest neighbor problem. FĂŒr eine gegebene Menge von Punkten im Euklidischen Raum betrachten wir das Problem den nĂ€chsten Nachbarpunkt zu bestimmen, der in einem Kegel liegt, dessen Spitze ein beliebiger Anfragepunkt ist. Wir untersuchen das dazugehörige Voronoi- Diagramm und entwickeln effiziente Datenstrukturen sowohl fĂŒr exakte als auch fĂŒr approximative cone-restricted nearest neighbor-Anfragen. Im speziellen entwickeln wir ein approximatives Voronoi-Diagramm der GrĂ¶ĂŸe O((n=ed) log(1=e)), das dazu benutzt werden kann, Anfragen in der Zeit O(log(n=e)) zu beantworten
    • 

    corecore