289 research outputs found

    Towards a Scalable Dynamic Spatial Database System

    Get PDF
    With the rise of GPS-enabled smartphones and other similar mobile devices, massive amounts of location data are available. However, no scalable solutions for soft real-time spatial queries on large sets of moving objects have yet emerged. In this paper we explore and measure the limits of actual algorithms and implementations regarding different application scenarios. And finally we propose a novel distributed architecture to solve the scalability issues.Comment: (2012

    d-Simplexed : Adaptive Delaunay Triangulation or Performance Modeling and Prediction on Big Data Analytics

    Get PDF
    Big Data processing systems (e.g., Spark) have a number of resource configuration parameters, such as memory size, CPU allocation, and the number of running nodes. Regular users and even expert administrators struggle to understand the mutual relation between different parameter configurations and the overall performance of the system. In this paper, we address this challenge by proposing a performance prediction framework, called dd-Simplexed, to build performance models with varied configurable parameters on Spark. We take inspiration from the field of Computational Geometry to construct a d-dimensional mesh using Delaunay Triangulation over a selected set of features. From this mesh, we predict execution time for various feature configurations. To minimize the time and resources in building a bootstrap model with a large number of configuration values, we propose an adaptive sampling technique to allow us to collect as few training points as required. Our evaluation on a cluster of computers using WordCount, PageRank, Kmeans, and Join workloads in HiBench benchmarking suites shows that we can achieve less than 5% error rate for estimation accuracy by sampling less than 1% of data.Peer reviewe
    corecore