403 research outputs found

    Dense Haze: A benchmark for image dehazing with dense-haze and haze-free images

    Full text link
    Single image dehazing is an ill-posed problem that has recently drawn important attention. Despite the significant increase in interest shown for dehazing over the past few years, the validation of the dehazing methods remains largely unsatisfactory, due to the lack of pairs of real hazy and corresponding haze-free reference images. To address this limitation, we introduce Dense-Haze - a novel dehazing dataset. Characterized by dense and homogeneous hazy scenes, Dense-Haze contains 33 pairs of real hazy and corresponding haze-free images of various outdoor scenes. The hazy scenes have been recorded by introducing real haze, generated by professional haze machines. The hazy and haze-free corresponding scenes contain the same visual content captured under the same illumination parameters. Dense-Haze dataset aims to push significantly the state-of-the-art in single-image dehazing by promoting robust methods for real and various hazy scenes. We also provide a comprehensive qualitative and quantitative evaluation of state-of-the-art single image dehazing techniques based on the Dense-Haze dataset. Not surprisingly, our study reveals that the existing dehazing techniques perform poorly for dense homogeneous hazy scenes and that there is still much room for improvement.Comment: 5 pages, 2 figure

    O-HAZE: a dehazing benchmark with real hazy and haze-free outdoor images

    Full text link
    Haze removal or dehazing is a challenging ill-posed problem that has drawn a significant attention in the last few years. Despite this growing interest, the scientific community is still lacking a reference dataset to evaluate objectively and quantitatively the performance of proposed dehazing methods. The few datasets that are currently considered, both for assessment and training of learning-based dehazing techniques, exclusively rely on synthetic hazy images. To address this limitation, we introduce the first outdoor scenes database (named O-HAZE) composed of pairs of real hazy and corresponding haze-free images. In practice, hazy images have been captured in presence of real haze, generated by professional haze machines, and OHAZE contains 45 different outdoor scenes depicting the same visual content recorded in haze-free and hazy conditions, under the same illumination parameters. To illustrate its usefulness, O-HAZE is used to compare a representative set of state-of-the-art dehazing techniques, using traditional image quality metrics such as PSNR, SSIM and CIEDE2000. This reveals the limitations of current techniques, and questions some of their underlying assumptions.Comment: arXiv admin note: text overlap with arXiv:1804.0509

    Single Image Dehazing through Improved Atmospheric Light Estimation

    Full text link
    Image contrast enhancement for outdoor vision is important for smart car auxiliary transport systems. The video frames captured in poor weather conditions are often characterized by poor visibility. Most image dehazing algorithms consider to use a hard threshold assumptions or user input to estimate atmospheric light. However, the brightest pixels sometimes are objects such as car lights or streetlights, especially for smart car auxiliary transport systems. Simply using a hard threshold may cause a wrong estimation. In this paper, we propose a single optimized image dehazing method that estimates atmospheric light efficiently and removes haze through the estimation of a semi-globally adaptive filter. The enhanced images are characterized with little noise and good exposure in dark regions. The textures and edges of the processed images are also enhanced significantly.Comment: Multimedia Tools and Applications (2015

    Joint Transmission Map Estimation and Dehazing using Deep Networks

    Full text link
    Single image haze removal is an extremely challenging problem due to its inherent ill-posed nature. Several prior-based and learning-based methods have been proposed in the literature to solve this problem and they have achieved superior results. However, most of the existing methods assume constant atmospheric light model and tend to follow a two-step procedure involving prior-based methods for estimating transmission map followed by calculation of dehazed image using the closed form solution. In this paper, we relax the constant atmospheric light assumption and propose a novel unified single image dehazing network that jointly estimates the transmission map and performs dehazing. In other words, our new approach provides an end-to-end learning framework, where the inherent transmission map and dehazed result are learned directly from the loss function. Extensive experiments on synthetic and real datasets with challenging hazy images demonstrate that the proposed method achieves significant improvements over the state-of-the-art methods.Comment: This paper has been accepted in IEEE-TCSV

    The Effectiveness of Instance Normalization: a Strong Baseline for Single Image Dehazing

    Full text link
    We propose a novel deep neural network architecture for the challenging problem of single image dehazing, which aims to recover the clear image from a degraded hazy image. Instead of relying on hand-crafted image priors or explicitly estimating the components of the widely used atmospheric scattering model, our end-to-end system directly generates the clear image from an input hazy image. The proposed network has an encoder-decoder architecture with skip connections and instance normalization. We adopt the convolutional layers of the pre-trained VGG network as encoder to exploit the representation power of deep features, and demonstrate the effectiveness of instance normalization for image dehazing. Our simple yet effective network outperforms the state-of-the-art methods by a large margin on the benchmark datasets

    Haze Visibility Enhancement: A Survey and Quantitative Benchmarking

    Full text link
    This paper provides a comprehensive survey of methods dealing with visibility enhancement of images taken in hazy or foggy scenes. The survey begins with discussing the optical models of atmospheric scattering media and image formation. This is followed by a survey of existing methods, which are grouped to multiple image methods, polarizing filters based methods, methods with known depth, and single-image methods. We also provide a benchmark of a number of well known single-image methods, based on a recent dataset provided by Fattal and our newly generated scattering media dataset that contains ground truth images for quantitative evaluation. To our knowledge, this is the first benchmark using numerical metrics to evaluate dehazing techniques. This benchmark allows us to objectively compare the results of existing methods and to better identify the strengths and limitations of each method

    Cycle-Dehaze: Enhanced CycleGAN for Single Image Dehazing

    Full text link
    In this paper, we present an end-to-end network, called Cycle-Dehaze, for single image dehazing problem, which does not require pairs of hazy and corresponding ground truth images for training. That is, we train the network by feeding clean and hazy images in an unpaired manner. Moreover, the proposed approach does not rely on estimation of the atmospheric scattering model parameters. Our method enhances CycleGAN formulation by combining cycle-consistency and perceptual losses in order to improve the quality of textural information recovery and generate visually better haze-free images. Typically, deep learning models for dehazing take low resolution images as input and produce low resolution outputs. However, in the NTIRE 2018 challenge on single image dehazing, high resolution images were provided. Therefore, we apply bicubic downscaling. After obtaining low-resolution outputs from the network, we utilize the Laplacian pyramid to upscale the output images to the original resolution. We conduct experiments on NYU-Depth, I-HAZE, and O-HAZE datasets. Extensive experiments demonstrate that the proposed approach improves CycleGAN method both quantitatively and qualitatively.Comment: Accepted at CVPRW: NTIRE 201

    Single Image Haze Removal using a Generative Adversarial Network

    Full text link
    Traditional methods to remove haze from images rely on estimating a transmission map. When dealing with single images, this becomes an ill-posed problem due to the lack of depth information. In this paper, we propose an end-to-end learning based approach which uses a modified conditional Generative Adversarial Network to directly remove haze from an image. We employ the usage of the Tiramisu model in place of the classic U-Net model as the generator owing to its higher parameter efficiency and performance. Moreover, a patch based discriminator was used to reduce artefacts in the output. To further improve the perceptual quality of the output, a hybrid weighted loss function was designed and used to train the model. Experiments on synthetic and real world hazy images demonstrates that our model performs competitively with the state of the art methods.Comment: Accepted for the WiSPNET 2020 conference. Please refer to the GitHub repository for information on updates to the paper: https://github.com/thatbrguy/Dehaze-GA

    Unsupervised Single Image Dehazing Using Dark Channel Prior Loss

    Full text link
    Single image dehazing is a critical stage in many modern-day autonomous vision applications. Early prior-based methods often involved a time-consuming minimization of a hand-crafted energy function. Recent learning-based approaches utilize the representational power of deep neural networks (DNNs) to learn the underlying transformation between hazy and clear images. Due to inherent limitations in collecting matching clear and hazy images, these methods resort to training on synthetic data; constructed from indoor images and corresponding depth information. This may result in a possible domain shift when treating outdoor scenes. We propose a completely unsupervised method of training via minimization of the well-known, Dark Channel Prior (DCP) energy function. Instead of feeding the network with synthetic data, we solely use real-world outdoor images and tune the network's parameters by directly minimizing the DCP. Although our "Deep DCP" technique can be regarded as a fast approximator of DCP, it actually improves its results significantly. This suggests an additional regularization obtained via the network and learning process. Experiments show that our method performs on par with large-scale supervised methods

    Underwater Single Image Color Restoration Using Haze-Lines and a New Quantitative Dataset

    Full text link
    Underwater images suffer from color distortion and low contrast, because light is attenuated while it propagates through water. Attenuation under water varies with wavelength, unlike terrestrial images where attenuation is assumed to be spectrally uniform. The attenuation depends both on the water body and the 3D structure of the scene, making color restoration difficult. Unlike existing single underwater image enhancement techniques, our method takes into account multiple spectral profiles of different water types. By estimating just two additional global parameters: the attenuation ratios of the blue-red and blue-green color channels, the problem is reduced to single image dehazing, where all color channels have the same attenuation coefficients. Since the water type is unknown, we evaluate different parameters out of an existing library of water types. Each type leads to a different restored image and the best result is automatically chosen based on color distribution. We collected a dataset of images taken in different locations with varying water properties, showing color charts in the scenes. Moreover, to obtain ground truth, the 3D structure of the scene was calculated based on stereo imaging. This dataset enables a quantitative evaluation of restoration algorithms on natural images and shows the advantage of our method
    • …
    corecore