1,230 research outputs found

    Probabilistic Computability and Choice

    Get PDF
    We study the computational power of randomized computations on infinite objects, such as real numbers. In particular, we introduce the concept of a Las Vegas computable multi-valued function, which is a function that can be computed on a probabilistic Turing machine that receives a random binary sequence as auxiliary input. The machine can take advantage of this random sequence, but it always has to produce a correct result or to stop the computation after finite time if the random advice is not successful. With positive probability the random advice has to be successful. We characterize the class of Las Vegas computable functions in the Weihrauch lattice with the help of probabilistic choice principles and Weak Weak K\H{o}nig's Lemma. Among other things we prove an Independent Choice Theorem that implies that Las Vegas computable functions are closed under composition. In a case study we show that Nash equilibria are Las Vegas computable, while zeros of continuous functions with sign changes cannot be computed on Las Vegas machines. However, we show that the latter problem admits randomized algorithms with weaker failure recognition mechanisms. The last mentioned results can be interpreted such that the Intermediate Value Theorem is reducible to the jump of Weak Weak K\H{o}nig's Lemma, but not to Weak Weak K\H{o}nig's Lemma itself. These examples also demonstrate that Las Vegas computable functions form a proper superclass of the class of computable functions and a proper subclass of the class of non-deterministically computable functions. We also study the impact of specific lower bounds on the success probabilities, which leads to a strict hierarchy of classes. In particular, the classical technique of probability amplification fails for computations on infinite objects. We also investigate the dependency on the underlying probability space.Comment: Information and Computation (accepted for publication

    Revising Type-2 Computation and Degrees of Discontinuity

    Get PDF
    By the sometimes so-called MAIN THEOREM of Recursive Analysis, every computable real function is necessarily continuous. Weihrauch and Zheng (TCS'2000), Brattka (MLQ'2005), and Ziegler (ToCS'2006) have considered different relaxed notions of computability to cover also discontinuous functions. The present work compares and unifies these approaches. This is based on the concept of the JUMP of a representation: both a TTE-counterpart to the well known recursion-theoretic jump on Kleene's Arithmetical Hierarchy of hypercomputation: and a formalization of revising computation in the sense of Shoenfield. We also consider Markov and Banach/Mazur oracle-computation of discontinuous fu nctions and characterize the computational power of Type-2 nondeterminism to coincide with the first level of the Analytical Hierarchy.Comment: to appear in Proc. CCA'0

    Infinite computations with random oracles

    Full text link
    We consider the following problem for various infinite time machines. If a real is computable relative to large set of oracles such as a set of full measure or just of positive measure, a comeager set, or a nonmeager Borel set, is it already computable? We show that the answer is independent from ZFC for ordinal time machines (OTMs) with and without ordinal parameters and give a positive answer for most other machines. For instance, we consider, infinite time Turing machines (ITTMs), unresetting and resetting infinite time register machines (wITRMs, ITRMs), and \alpha-Turing machines for countable admissible ordinals \alpha

    Unexpected Power of Random Strings

    Get PDF

    Derandomization in Game-theoretic Probability

    Full text link
    We give a general method for constructing a deterministic strategy of Reality from a randomized strategy in game-theoretic probability. The construction can be seen as derandomization in game-theoretic probability.Comment: 19 page
    • …
    corecore