291 research outputs found

    Multi-Antenna Cooperative Wireless Systems: A Diversity-Multiplexing Tradeoff Perspective

    Full text link
    We consider a general multiple antenna network with multiple sources, multiple destinations and multiple relays in terms of the diversity-multiplexing tradeoff (DMT). We examine several subcases of this most general problem taking into account the processing capability of the relays (half-duplex or full-duplex), and the network geometry (clustered or non-clustered). We first study the multiple antenna relay channel with a full-duplex relay to understand the effect of increased degrees of freedom in the direct link. We find DMT upper bounds and investigate the achievable performance of decode-and-forward (DF), and compress-and-forward (CF) protocols. Our results suggest that while DF is DMT optimal when all terminals have one antenna each, it may not maintain its good performance when the degrees of freedom in the direct link is increased, whereas CF continues to perform optimally. We also study the multiple antenna relay channel with a half-duplex relay. We show that the half-duplex DMT behavior can significantly be different from the full-duplex case. We find that CF is DMT optimal for half-duplex relaying as well, and is the first protocol known to achieve the half-duplex relay DMT. We next study the multiple-access relay channel (MARC) DMT. Finally, we investigate a system with a single source-destination pair and multiple relays, each node with a single antenna, and show that even under the idealistic assumption of full-duplex relays and a clustered network, this virtual multi-input multi-output (MIMO) system can never fully mimic a real MIMO DMT. For cooperative systems with multiple sources and multiple destinations the same limitation remains to be in effect.Comment: version 1: 58 pages, 15 figures, Submitted to IEEE Transactions on Information Theory, version 2: Final version, to appear IEEE IT, title changed, extra figures adde

    Throughput Scaling of Wireless Networks With Random Connections

    Full text link
    This work studies the throughput scaling laws of ad hoc wireless networks in the limit of a large number of nodes. A random connections model is assumed in which the channel connections between the nodes are drawn independently from a common distribution. Transmitting nodes are subject to an on-off strategy, and receiving nodes employ conventional single-user decoding. The following results are proven: 1) For a class of connection models with finite mean and variance, the throughput scaling is upper-bounded by O(n1/3)O(n^{1/3}) for single-hop schemes, and O(n1/2)O(n^{1/2}) for two-hop (and multihop) schemes. 2) The Θ(n1/2)\Theta (n^{1/2}) throughput scaling is achievable for a specific connection model by a two-hop opportunistic relaying scheme, which employs full, but only local channel state information (CSI) at the receivers, and partial CSI at the transmitters. 3) By relaxing the constraints of finite mean and variance of the connection model, linear throughput scaling Θ(n)\Theta (n) is achievable with Pareto-type fading models.Comment: 13 pages, 4 figures, To appear in IEEE Transactions on Information Theor

    Radio Resource Management for Ultra-Reliable Low-Latency Communications in 5G

    Get PDF
    • …
    corecore