838 research outputs found

    On SDoF of Multi-Receiver Wiretap Channel With Alternating CSIT

    Full text link
    We study the problem of secure transmission over a Gaussian multi-input single-output (MISO) two receiver channel with an external eavesdropper, under the assumption that the state of the channel which is available to each receiver is conveyed either perfectly (PP) or with delay (DD) to the transmitter. Denoting by S1S_1, S2S_2, and S3S_3 the channel state information at the transmitter (CSIT) of user 1, user 2, and eavesdropper, respectively, the overall CSIT can then alternate between eight possible states, i.e., (S1,S2,S3)∈{P,D}3(S_1,S_2,S_3) \in \{P,D\}^3. We denote by λS1S2S3\lambda_{S_1 S_2 S_3} the fraction of time during which the state S1S2S3S_1S_2S_3 occurs. Under these assumptions, we first consider the Gaussian MISO wiretap channel and characterize the secure degrees of freedom (SDoF). Next, we consider the general multi-receiver setup and characterize the SDoF region of fixed hybrid states PPDPPD, PDPPDP, and DDPDDP. We then focus our attention on the symmetric case in which λPDD=λDPD\lambda_{PDD}=\lambda_{DPD}. For this case, we establish bounds on SDoF region. The analysis reveals that alternating CSIT allows synergistic gains in terms of SDoF; and shows that, by opposition to encoding separately over different states, joint encoding across the states enables strictly better secure rates. Furthermore, we specialize our results for the two receivers channel with an external eavesdropper to the two-user broadcast channel. We show that, the synergistic gains in terms of SDoF by alternating CSIT is not restricted to multi-receiver wiretap channels; and, can also be harnessed under broadcast setting.Comment: To Appear in IEEE Transactions on Information Forensics and Securit

    On the Degrees-of-freedom of the 3-user MISO Broadcast Channel with Hybrid CSIT

    Full text link
    The 3-user multiple-input single-output (MISO) broadcast channel (BC) with hybrid channel state information at the transmitter (CSIT) is considered. In this framework, there is perfect and instantaneous CSIT from a subset of users and delayed CSIT from the remaining users. We present new results on the degrees of freedom (DoF) of the 3-user MISO BC with hybrid CSIT. In particular, for the case of 2 transmit antennas, we show that with perfect CSIT from one user and delayed CSIT from the remaining two users, the optimal DoF is 5/3. For the case of 3 transmit antennas and the same hybrid CSIT setting, it is shown that a higher DoF of 9/5 is achievable and this result improves upon the best known bound. Furthermore, with 3 transmit antennas, and the hybrid CSIT setting in which there is perfect CSIT from two users and delayed CSIT from the third one, a novel scheme is presented which achieves 9/4 DoF. Our results also reveal new insights on how to utilize hybrid channel knowledge for multi-user scenarios
    • …
    corecore