329 research outputs found

    Degrees of Freedom of Certain Interference Alignment Schemes with Distributed CSIT

    Full text link
    In this work, we consider the use of interference alignment (IA) in a MIMO interference channel (IC) under the assumption that each transmitter (TX) has access to channel state information (CSI) that generally differs from that available to other TXs. This setting is referred to as distributed CSIT. In a setting where CSI accuracy is controlled by a set of power exponents, we show that in the static 3-user MIMO square IC, the number of degrees-of-freedom (DoF) that can be achieved with distributed CSIT is at least equal to the DoF achieved with the worst accuracy taken across the TXs and across the interfering links. We conjecture further that this represents exactly the DoF achieved. This result is in strong contrast with the centralized CSIT configuration usually studied (where all the TXs share the same, possibly imperfect, channel estimate) for which it was shown that the DoF achieved at receiver (RX) i is solely limited by the quality of its own feedback. This shows the critical impact of CSI discrepancies between the TXs, and highlights the price paid by distributed precoding.Comment: This is an extended version of a conference submission which will be presented at the IEEE conference SPAWC, Darmstadt, June 201

    Achievable Sum DoF of the K-User MIMO Interference Channel with Delayed CSIT

    Get PDF
    This paper considers a KK-user multiple-input-multiple-output (MIMO) interference channel (IC) where 1) the channel state information obtained by the transmitters (CSIT) is completely outdated, and 2) the number of transmit antennas at each transmitter, i.e., MM, is greater than the number of receive antennas at each user, i.e., NN. The usefulness of the delayed CSIT was firstly identified in a KK-phase Retrospective Interference Alignment (RIA) scheme proposed by Maddah-Ali et al for the Multiple-Input-Single-Output Broadcast Channel, but the extension to the MIMO IC is a non-trivial step as each transmitter only has the message intended for the corresponding user. Recently, Abdoli et al focused on a Single-Input-Single-Output IC and solved such bottleneck by inventing a KK-phase RIA with distributed overheard interference retransmission. In this paper, we propose two KK-phase RIA schemes suitable for the MIMO IC by generalizing and integrating some key features of both Abdoli's and Maddah-Ali's works. The two schemes jointly yield the best known sum Degrees-of-Freedom (DoF) performance so far. For the case MNβ‰₯K\frac{M}{N}{\geq}K, the achieved sum DoF is asymptotically given by 6415N\frac{64}{15}N when Kβ†’βˆžK{\to}\infty

    Elements of Cellular Blind Interference Alignment --- Aligned Frequency Reuse, Wireless Index Coding and Interference Diversity

    Full text link
    We explore degrees of freedom (DoF) characterizations of partially connected wireless networks, especially cellular networks, with no channel state information at the transmitters. Specifically, we introduce three fundamental elements --- aligned frequency reuse, wireless index coding and interference diversity --- through a series of examples, focusing first on infinite regular arrays, then on finite clusters with arbitrary connectivity and message sets, and finally on heterogeneous settings with asymmetric multiple antenna configurations. Aligned frequency reuse refers to the optimality of orthogonal resource allocations in many cases, but according to unconventional reuse patterns that are guided by interference alignment principles. Wireless index coding highlights both the intimate connection between the index coding problem and cellular blind interference alignment, as well as the added complexity inherent to wireless settings. Interference diversity refers to the observation that in a wireless network each receiver experiences a different set of interferers, and depending on the actions of its own set of interferers, the interference-free signal space at each receiver fluctuates differently from other receivers, creating opportunities for robust applications of blind interference alignment principles
    • …
    corecore