57 research outputs found

    Aiming Perfectly in the Dark - Blind Interference Alignment through Staggered Antenna Switching

    Full text link
    We propose a blind interference alignment scheme for the vector broadcast channel where the transmitter is equipped with M antennas and there are K receivers, each equipped with a reconfigurable antenna capable of switching among M preset modes. Without any knowledge of the channel coefficient values at the transmitters and with only mild assumptions on the channel coherence structure we show that MK/M+K-1 degrees of freedom are achievable. The key to the blind interference alignment scheme is the ability of the receivers to switch between reconfigurable antenna modes to create short term channel fluctuation patterns that are exploited by the transmitter. The achievable scheme does not require cooperation between transmit antennas and is therefore applicable to the MxK X network as well. Only finite symbol extensions are used, and no channel knowledge at the receivers is required to null the interference.Comment: 27 pages, 15 figure

    Retrospective Interference Alignment

    Full text link
    We explore similarities and differences in recent works on blind interference alignment under different models such as staggered block fading model and the delayed CSIT model. In particular we explore the possibility of achieving interference alignment with delayed CSIT when the transmitters are distributed. Our main contribution is an interference alignment scheme, called retrospective interference alignment in this work, that is specialized to settings with distributed transmitters. With this scheme we show that the 2 user X channel with only delayed channel state information at the transmitters can achieve 8/7 DoF, while the interference channel with 3 users is able to achieve 9/8 DoF. We also consider another setting where delayed channel output feedback is available to transmitters. In this setting the X channel and the 3 user interference channel are shown to achieve 4/3 and 6/5 DoF, respectively

    Grouping Based Blind Interference Alignment for KK-user MISO Interference Channels

    Full text link
    We propose a blind interference alignment (BIA) through staggered antenna switching scheme with no ideal channel assumption. Contrary to the ideal assumption that channels remain constant during BIA symbol extension period, when the coherence time of the channel is relatively short, channel coefficients may change during a given symbol extension period. To perform BIA perfectly with realistic channel assumption, we propose a grouping based supersymbol structure for KK-user interference channels which can adjust a supersymbol length to given coherence time. It is proved that the supersymbol length could be reduced significantly by an appropriate grouping. Furthermore, it is also shown that the grouping based supersymbol achieves higher degrees of freedom than the conventional method with given coherence time.Comment: 5 pages, 3 figures, to appear in IEEE ISIT 201

    Degrees of freedom of wireless interference network

    Get PDF
    Wireless communication systems are different from the wired systems mainly in three aspects: fading, broadcast, and superposition. Wireless communication networks, and multi-user communication networks in general, have not been well understood from the information-theoretic perspective: the capacity limits of many multi-user networks are not known. For example, the capacity region of a two-user single-antenna interference channel is still not known, though recent result can bound the region up to a constant value. Characterizing the capacity limits of multi-user multiple-input multiple-output (MIMO) interference network is usually even more difficult than the single antenna setup. To alleviate the difficulty in studying such networks, the concept of degrees of freedom (DoF) has been adopted, which captures the first order behavior of the capacities or capacity regions. One important technique developed recently for quantifying the DoF of multi-user networks is the so-called interference alignment. The purpose of interference alignment is to design the transmit signals structurally so that the interference signals from multiple interferers are aligned to reduce the signal dimensions occupied by interference. In this thesis, we mainly study two problems related to DoF and interference alignment: 1) DoF region of MIMO full interference channel (FIC) and Z interference channel (ZIC) with reconfigurable antennas, and 2) the DoF region of an interference network with general message demands. For the first problem, we derive the outer bound on the DoF region and show that it is achievable via time-sharing or beamforming except for one special case. As to this particular special case, we develop a systematic way of constructing the DoF-achieving nulling and beamforming matrices. Our results reveal the potential benefit of using the reconfigurable antenna in MIMO FIC and ZIC. In addition, the achievability scheme has an interesting space-frequency interpretation. For the second problem, we derive the DoF region of a single antenna interference network with general message demands, which includes the multiple unicasts and multiple multicasts as special cases. We perform interference alignment using multiple base vectors and align the interference at each receiver to its largest interferer. Furthermore, we show that the DoF region is determined by a subset of receivers, and the DoF region can be achieved by considering a smaller number of interference alignment constraints so as to reduce the number of time expansion. Finally, as a related research topic, we also include a result on the average throughput of a MIMO interference channel with single-user detector at receivers and without channel state information at transmitters. We present a piecewise linear approximation of the channel throughput under weak, moderate and strong interference regimes. Based on that we determine the optimal number of streams that a transmitter should use for different interference levels
    • …
    corecore