2,761 research outputs found

    Reciprocity in Social Networks with Capacity Constraints

    Full text link
    Directed links -- representing asymmetric social ties or interactions (e.g., "follower-followee") -- arise naturally in many social networks and other complex networks, giving rise to directed graphs (or digraphs) as basic topological models for these networks. Reciprocity, defined for a digraph as the percentage of edges with a reciprocal edge, is a key metric that has been used in the literature to compare different directed networks and provide "hints" about their structural properties: for example, are reciprocal edges generated randomly by chance or are there other processes driving their generation? In this paper we study the problem of maximizing achievable reciprocity for an ensemble of digraphs with the same prescribed in- and out-degree sequences. We show that the maximum reciprocity hinges crucially on the in- and out-degree sequences, which may be intuitively interpreted as constraints on some "social capacities" of nodes and impose fundamental limits on achievable reciprocity. We show that it is NP-complete to decide the achievability of a simple upper bound on maximum reciprocity, and provide conditions for achieving it. We demonstrate that many real networks exhibit reciprocities surprisingly close to the upper bound, which implies that users in these social networks are in a sense more "social" than suggested by the empirical reciprocity alone in that they are more willing to reciprocate, subject to their "social capacity" constraints. We find some surprising linear relationships between empirical reciprocity and the bound. We also show that a particular type of small network motifs that we call 3-paths are the major source of loss in reciprocity for real networks

    Switching Reconstruction of Digraphs

    Get PDF
    Switching about a vertex in a digraph means to reverse the direction of every edge incident with that vertex. Bondy and Mercier introduced the problem of whether a digraph can be reconstructed up to isomorphism from the multiset of isomorphism types of digraphs obtained by switching about each vertex. Since the largest known non-reconstructible oriented graphs have 8 vertices, it is natural to ask whether there are any larger non-reconstructible graphs. In this paper we continue the investigation of this question. We find that there are exactly 44 non-reconstructible oriented graphs whose underlying undirected graphs have maximum degree at most 2. We also determine the full set of switching-stable oriented graphs, which are those graphs for which all switchings return a digraph isomorphic to the original

    Small feedback vertex sets in planar digraphs

    Full text link
    Let GG be a directed planar graph on nn vertices, with no directed cycle of length less than g≥4g\ge 4. We prove that GG contains a set XX of vertices such that G−XG-X has no directed cycle, and ∣X∣≤5n−59|X|\le \tfrac{5n-5}9 if g=4g=4, ∣X∣≤2n−54|X|\le \tfrac{2n-5}4 if g=5g=5, and ∣X∣≤2n−6g|X|\le \tfrac{2n-6}{g} if g≥6g\ge 6. This improves recent results of Golowich and Rolnick.Comment: 5 pages, 1 figure - v3 final versio

    Packing tight Hamilton cycles in 3-uniform hypergraphs

    Full text link
    Let H be a 3-uniform hypergraph with N vertices. A tight Hamilton cycle C \subset H is a collection of N edges for which there is an ordering of the vertices v_1, ..., v_N such that every triple of consecutive vertices {v_i, v_{i+1}, v_{i+2}} is an edge of C (indices are considered modulo N). We develop new techniques which enable us to prove that under certain natural pseudo-random conditions, almost all edges of H can be covered by edge-disjoint tight Hamilton cycles, for N divisible by 4. Consequently, we derive the corollary that random 3-uniform hypergraphs can be almost completely packed with tight Hamilton cycles w.h.p., for N divisible by 4 and P not too small. Along the way, we develop a similar result for packing Hamilton cycles in pseudo-random digraphs with even numbers of vertices.Comment: 31 pages, 1 figur
    • …
    corecore